
Homework 7 Solutions

November 30, 2016

Problems 1-5 in Chapter 20 of Lang’s Algebra.

1. Prove that the standard complex is actually a complex, and is exact, so
that it gives a resolution of Z.

Solution. To show that d2 = 0, apply di−1di to (x0, · · · , xi). The terms
are of the form (x0, · · · , x̂j, · · · , x̂k, · · · , xi) because each application of d
eliminates one term. Each term occurs twice (since we may eliminate the
xj and xk in either order) and with opposite signs, so the cancel. This the
standard complex is a complex, but we still have to show that ker(di) ⊆
im(di+1).

The standard resolution depends on the choice of a nonempty set S. Pick
an element z ∈ S. Define a map h : Ei −→ Ei+1 that sends (x0, · · · , xi) to
(z, x0, · · · , xi). Let us check that

dh+ hd = 1Ei
. (1)

Indeed, applying hd to (x0, · · · , xi) gives

(ẑ, x0, · · · , xi) +
i∑

j=0

(−1)j+1(z, x0, · · · , x̂j, · · · , xi),

where the hat denotes the omission of a term, so that the first term is really
(x0, · · · , xi). Applying hd to (x0, · · · , xi) gives

i∑
j=0

(−1)j(z, x0, · · · , x̂j, · · · , xi).

Adding these two the terms cancel in pairs except one, proving (1).
Now we may prove that the complex is exact. Let ξ ∈ ker(di). Then by

(1), ξ = di+1hi(ξ) + hi−1di(ξ) = di+1hi(ξ), so ξ ∈ im(di+1).
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2. Let G be a group. Use G as the set S in the standard complex. Define an
action of G on the standard complex by leting x(x0, · · · , xi) = (xx0, · · · , xxi).
Prove that each Ei is a free module over the group ring Z[G]. Thus if we let
R = Z[G] be the group ring and consider the category Mod(G) of G-modules,
then the standard complex gives a free resolution of Z in this category.

Solution. We say that a G-module A is trivial if gx = g for all g ∈ G and
x ∈ A. Here Z is a trivial G-module.

The abelian group Ei is the free Z-module on Z[G]i+1. The elements
(x0, · · · , xi) of Z[G]i+1 thus consist of a basis of Ei as a Z-module. To see
that Ei is free as a G-module, let x1, · · · , xi ∈ G and define Ei(x1, · · · , xi)
to be the Z[G]-submodule generated by (1, x1, · · · , xi). Then every basis ele-
ment (x0, · · · , xi) lies in a unique such module, namely Ei(x−10 x1, · · · , x−10 xi).
Therefore

Ei =
⊕

(x1,··· ,xi)∈Z[G]i

Ei(x1, · · · , xi) (2)

and soEi is a free Z[G]-module with basis consisting of the elements (1, x1, · · · , xi).
Now consider the standard complex

. . . −→ E1 −→ E0 −→ Z −→ 0.

It follows from the definitions of the maps di : Ei −→ Ei−1 and the augmen-
tation map ε : E0 = Z[G] −→ Z that these are all Z[G]-module homomor-
phisms, so this is a free resolution of the trivial module Z.

Problem 1 shows that the complex is exact, even though its proof makes
use of a map h that is not a Z[G]-module homomorphism!

3. The standard complex E was written in homogeneous form, so the bound-
ary maps have a certain symmetry. There is another complex that exhibits
useful features as follows. Let F i be the free Z[G]-module having for basis
i-tuples (rather than (i+ 1)-tuples) (x1, · · · , xi) For i = 0 we take F0 = Z[G]
itself. Define the boundary operator

d(x1, · · · , xi) = x1(x2, · · · , xi) +
i−1∑
j=1

(−1)j(x1, x2, · · · , xjxj+1, · · · , xi)

+(−1)i+1(x1, x2, · · · , xi−1).
(The last term is misprinted in some copies of Lang.) Show that E ∼= F as
complexes of G-modules via the map F i −→ Ei in which

(x1, · · · , xi) 7→ (1, x1, x1x2, . . . , x1 · · · xi). (3)
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Proof. Let θi : F i −→ Ei be the map (3). It follows from (2) that θi maps
the given basis of F i onto a basis of Ei. Thus the map (3) is an isomor-
phism of Z[G]-modules. We thus need to compute θ−1i diθi and check that it
has the advertized formula. Consider what happens when we omit the j-th
component term from (1, x1, x1x2, . . . , x1 · · ·xi) ∈ Ei. If j = 0 we get

(x1, x1x2, . . . , x1 · · ·xi) = xi(1, x2, · · · , x2 · · ·xi) = xiθi−1(x2, · · · , xi).

On the other hand if 0 < j < i, we get

(1, x1, x1x2, . . . , x1 · · · xj−1, x1 · · ·xj+1, . . .) = θi−1(x1, x2, · · · , xjxj+1, · · · , xi).

Finally if j = i we get θi−1(x1, x2, · · · , xi). From these calculations, we see
that θ−1i diθi is given by the advertized formula.

4. If A is a G-module, let AG be the submodule consisting of all elements
v ∈ A such that xv = v for all x ∈ G. Thus AG (sometimes called the module
of invariants) has trivial G-action.

(a) Show that if Hq(G,A) denotes the q-th homology of the complex
HomG(E,A), then H0(G,A) = AG. Thus the left derived functors of A 7→ AG

are the homology groups of the complex HomG(E,A), or for that matter, of
the complex HomG(F,A), where F is as in Exercise 3.

(b) Show that the group of 1-cycles Z1(G,A) consists of those functions
f : G −→ A satisfying

f(xy) = f(x) + xf(y), f(xy) = f(x) + xf(y), x, y ∈ G. (4)

Show that the subgroup of coboundaries B1(G,A) consists of those functions
f for which theere exists an element a ∈ A such that f(x) = xa − a. The
factor group is then H1(G,A).

(c) Show that the group of 2-cocycles Z2(G,A) consists of those functions
f : G −→ A satisfying

f(xy) = f(x) + xf(y), x, y ∈ G.

xf(y, z)− f(xy, z) + f(x, yz)− f(x, y) = 0. (5)

Such 2-cocycles are also called factor sets, and they can be used to de-
scribe isomorphism classes of group extensions, as in Exercise 5.
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Solution: In (b) and (c), Lang is using the resolution F . (Other resolu-
tions might be useful and give different descriptions.) For (a), note that
HomG(Z, A) ∼= AG. Indeed, a G-module homomorphism φ : Z −→ A is
uniquely determined by φ(1) which must be in AG because Z is a trivial
G-module. Therefore φ 7→ φ(1) is an isomorphism HomG(Z, A) −→ AG.

Since HomG(Z,−) is left exact, we see immediately that the functor A 7→
AG of invariants is left exact. Or prove this directly! We may use the
resolution F to compute the derived functors, which are Hq(G,A). In other
words, Hq(G,A) = Extq(Z, A). Now (a) is clear.

For (b), an element of φ ∈ Hom(F 1, A) is determined by its values on the
basis elements (x) of F , with x ∈ G. Thus we may think of f as just a map
G −→ A. The differential d : F 2 −→ F 1 maps (x, y) to x(y)− (xy) + (x) by
the formula in Exercise 3. Therefore df = 0 in HomG(F 2, A) if and only if
xf(y)− f(xy) + f(x) = 0, which we recognize as the crossed-homomorphism
property (4). These are the cocycles Z1(G,A). To identify the coboundaries,
observe that the unique basis element of F 0 is the empty sequence ε = ().
The map di : F 1 −→ F 0 is the map

df(x) = xε− ε.

Thus to α ∈ Hom(F 0, A) we may associate the element a = α(ε), and we
have diα(x) = xa− a.

Finally for (c), the map d : F 3 −→ F 2 maps

(x, y, z)→ x(y, z)− (xy, z) + (x, yz)− (x, y).

Hence for f ∈ Hom(F 2, A) to be a cocycle, the condition df = 0 is exactly the
cocycle condition (5). We see in the same way that the map f : G×G −→ A
is a coboundary if and only if it has the form

f(x, y) = xh(y)− h(xy) + h(x) (6)

for some map h : G −→ A. This completes the solution to Problem 4.

For the following exercise we switch to multiplicative notation. Thus the
cocycle condition (5) may be rewritten

f(xy, z)f(x, y) = xf(y, z)f(x, yz). (7)

The cocycle is called normalized if f(1, 1) = 1.
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Proposition 1. Every cocycle is equivalent to a normalized one. If f is a
normalized cocycle then for all t ∈ G we have

f(1, t) = f(t, 1) = 1, f(t, t−1) = tf(t−1, t). (8)

Proof. Cocycles are equivalent if they differ by a coboundary, which can be
an arbitrary function of the form

f0(x, y) = xh(y)h(y)/h(xy).

We may take h to be the constant function h(x) = f(1, 1), so f0(1, 1) =
f(1, 1). Dividing by this coboundary gives an equivalent normalized cocycle.
Now in the cocycle relation (7) take x = t, y = z = 1 to get f(t, 1)f(t, 1) =
f(1, 1)f(t, 1) and deduce that f(t, 1) = 1; and similarly taking x = y = 1
and z = t gives f(1, t) = 1. Finally we may take x = z = t and y = t−1 to
get f(1, t)f(t, t−1) = tf(t−1, t)f(t, 1) so f(t, t−1) = tf(t−1, t).

5. Group extensions. Let W be a group and A a normal subgroup
written multiplicatively. We assume that A is abelian. (Lang doesn’t assume
this at least in some copies of Algebra, but this hypothesis is essential.) Let
G = W/A be the factor group. Let F : G −→ W be a choice of coset
representatives. Define

f(x, y) = F (x)F (y)F (xy)−1.

(a) Prove that f is A-valued and that F : G×G −→ A is a 2-cocycle.
(b) Given a group G and an abelian group A, we view an extension W as

an exact sequence
1 −→ A −→ W −→ G −→ 1

Show that if two such extensions are isomorphic then the 2-cocycles associated
to these extensions define the same class in H1(G,A).

(c) Prove that the map we obtained above from the isomorphism classes
of group extensions to H2(G,A) is a bijection.

Solution. The action of G on A is by conjugation. Thus in multiplicative
notation,

xa = F (x)aF (x)−1. (9)
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Note that this action does not depend on the choice of representative F (x)
because if we change the representative, we change it by an element of A,
and A is assumed abelian.

(a) A priori , f(x, y) is an element of W , but if we apply the projection
map π : W −→ G to it we get xy(xy)−1 = 1. Thus f(x, y) is in the kernel
of π, which is A. To check the cocycle condition, since we are writing A
multiplicatively, and using the fact that A is abelian to move the terms
around, we need to check

xf(y, z)f(x, yz) = f(x, y)f(xy, z). (10)

which is the condition (5) in multiplicative notation. The left-hand side
equals

x(F (y)F (z)F (yz)−1)F (x)F (yz)F (xyz)−1.F (x)F (y)F (xy)

By (9) this equals

F (x)F (y)F (z)F (yz)−1F (x)−1·F (x)F (yz)F (xyz)−1 = F (x)F (y)F (z)F (xyz)−1.

Similarly the right hand side of (10) also equals F (x)F (y)F (z)F (xyz)−1 and
(10) is proved.

We need to check that the cohomology class of this cocycle does not
depend on the choice of “section” F : G −→ W . If we change the section to
another one F ′, then since F (x) and F ′(x) both must project back to x we
have F ′(x) = ϕ(x)F (x) where ϕ(x) ∈ A. Now consider

f ′(x, y) = F ′(x)F ′(y)F ′(xy)−1.

This equals

ϕ(x)F (x)ϕ(y)F (y)F (xy)ϕ(xy)−1 = ϕ(x) · xϕ(y)F (x)F (y)F (xy)ϕ(xy)−1

and since F (x)F (y)F (xy) and ϕ(xy)−1 are both in A, which is abelian, we
may write

f ′(x, y) = f0(x, y)f(x, y), f0(x, y) = ϕ(x) · xϕ(y) · ϕ(xy)−1.

Comparing this with (6), we see that f0 is a coboundary, so f and f ′ differ by a
coboundary, and we see that each extension determines a well-defined class in
Z2(G,A)/B2(G,A). The statement asked in (b), that if two such extensions
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are isomorphic then the 2-cocycles associated to these extensions define the
same class in H1(G,A) is now clear, because if 1 −→ A −→ W ′ −→ G −→ 1
is an equivalent extension then we may identify W with W ′, and the only
issue is that the section F might change, but we have already checked that
this only changes f by a coboundary.

(c) We must complement the construction above by showing how to start
with a 2-cocycle f and produce an extension 1 −→ A −→ W −→ G −→ 1.

We are permitted to change the 2-cocycle by a coboundary. We will
therefore assume that f is normalized. We define W to be the set of ordered
pairs (a, x) with a ∈ A and x ∈ G, with multiplication

(a, x)(b, y) = (f(x, y)a · xb, xy).

Let us check the associative law. We have

((a, x)(b, y))(c, z) = (f(x, y)a · xb, xy)(c, z) = (f(x, y) f(xy, z)a · xb · xyc, xyz)

while

(a, x)((b, y)(c, z)) = (a, x)(f(y, z)·b·yc, yz) = (f(x, yz)a · x(f(y, z) · b · yc), xyz) .

This equals
(f(x, yz)xf(y, z)a · xb · xyc, xyz).

So if f satisfies the cocycle relation (10) we have

((a, x)(b, y))(c, z) = (a, x)((b, y)(c, z)),

confirming the associative law.
Since f is normalized, it is easy to check that (1, 1) serves as an identity el-

ement. We may also check the existence of inverses. Since (a, x) = (a, 1)(1, x)
it is sufficient to exhibit inverses for (a, 1) and (1, x) separately. We have
(a, 1)−1 = (a−1, 1) while

(1, x)−1 = (f(x−1, x)−1, x−1). (11)

Indeed it is straightforward that (f(x−1, x)−1, x−1)(1, x) = (1, 1), while the
other identity

(1, x)(f(x−1, x)−1, x−1) = (1, 1)

can be checked using (8) or by exhibiting another right inverse and then
remembering that in a group, a left and right multiplicative inverse must
coincide.
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We have proved that W is a group. The maps A→ W in which a 7→ (a, 1)
and W → G which is the projection on the second component give us a group
extension.

We need to relate this to our original construction. Choose the section
F : G −→ W in which F (x) = (1, x). We will prove that

F (x)F (y)F (xy)−1 = f(x, y). (12)

Note that this will solve (c).
The left-hand side of (12) is

(1, x)(1, y)(f((xy)−1, xy)−1, (xy)−1) = (f(x, y), xy)(f((xy)−1, xy)−1, (xy)−1).

Using (8) this equals

(f(x, y), xy)((xy)
−1

f(xy, (xy)−1)−1, (xy)−1) = (f(x, y)f(xy, (xy)−1)−1f(xy, (xy)−1), 1)

or (f(x, y), 1). Since we are identifying A with its image in W , this proves
(12).
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