Homework 7 Solutions

November 30, 2016

Problems 1-5 in Chapter 20 of Lang’s Algebra.

1. Prove that the standard complex is actually a complex, and is exact, so
that it gives a resolution of Z.

Solution. To show that d* = 0, apply d;_1d; to (g, -+ ,x;). The terms
are of the form (zg,---,%;, -+, Tk, -+ ,x;) because each application of d
eliminates one term. Fach term occurs twice (since we may eliminate the
x; and zj, in either order) and with opposite signs, so the cancel. This the
standard complex is a complex, but we still have to show that ker(d;) C

1m(dz+1)

The standard resolution depends on the choice of a nonempty set S. Pick
an element z € S. Define a map h : E* — E'™! that sends (zg,- -, z;) to
(2,0, - ,x;). Let us check that

dh + hd = 1g,. (1)
Indeed, applying hd to (xo,- - ,z;) gives

(2’ Zo, - axi) + Z<_1)j+l(za Zo, - 7@7 T 71'1')7
§=0
where the hat denotes the omission of a term, so that the first term is really
(€0, -+ ,x;). Applying hd to (zo,--- ,x;) gives
Z(_l)](za Zoy - a:i‘\jv e >$i)-
j=0

Adding these two the terms cancel in pairs except one, proving (1).
Now we may prove that the complex is exact. Let £ € ker(d;). Then by

(1), € = dix1hi(§) + hi1di(§) = diz1hi(§), so € € im(d;pq).
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2. Let G be a group. Use G as the set S in the standard complex. Define an
action of G on the standard complex by leting x(xo, - - - ,x;) = (zx0, - -+ , 2T;).
Prove that each E is a free module over the group ring Z|G]. Thus if we let
R = Z|G] be the group ring and consider the category Mod(G) of G-modules,
then the standard complex gives a free resolution of Z in this category.

Solution. We say that a G-module A is trivial if gr = g for all ¢ € G and
x € A. Here Z is a trivial G-module.

The abelian group E° is the free Z-module on Z[G|""!. The elements
(wg, -+ ,x;) of Z[G]"™! thus consist of a basis of E; as a Z-module. To see
that E' is free as a G-module, let x1,--- ,z; € G and define E*(xy,- -, x;)
to be the Z|G]-submodule generated by (1,z,--- ,2;). Then every basis ele-
ment (g, - - -, 7;) lies in a unique such module, namely E(zg 'z, -+ , 25 z;).

Therefore
E= @ En,w) (2)
(z1,+,2;)EL[G]?
and so E; is a free Z[G]-module with basis consisting of the elements (1, xq, -+ , ;).

Now consider the standard complex
..— E'— E"—Z—0.

It follows from the definitions of the maps d; : E* — E*~! and the augmen-
tation map ¢ : E° = Z[G] — Z that these are all Z|G]-module homomor-
phisms, so this is a free resolution of the trivial module Z.

Problem 1 shows that the complex is exact, even though its proof makes
use of a map h that is not a Z[G]-module homomorphism!

3. The standard complex E was written in homogeneous form, so the bound-
ary maps have a certain symmetry. There is another complex that exhibits
useful features as follows. Let F* be the free Z|G)|-module having for basis
i-tuples (rather than (i+ 1)-tuples) (xy,--- ,x;) Fori =0 we take Fy = Z|G|
itself. Define the boundary operator

Ay, x) = a1 (a, ) + > (=1 (1,29, 2251, 5 25)
1

—

J
+(—1)i+1(1’1, Lo, ,377;_1).
(The last term is misprinted in some copies of Lang.) Show that £ = F' as
complexes of G-modules via the map F' — E* in which

(Il, s 7Ii> — (1,$1,ZE1I2, e, L1 Iz) (3)



Proof. Let 0; : F* — E' be the map (3). It follows from (2) that 6; maps
the given basis of " onto a basis of E. Thus the map (3) is an isomor-
phism of Z[G]-modules. We thus need to compute 6; 'd;0; and check that it
has the advertized formula. Consider what happens when we omit the j-th
component term from (1,2, 112o,..., 21+ x;) € E*. If j = 0 we get

($17$19€2, R %) = l’z‘(l,$27 Tyt l’z) = $i9i—1($27 T ,l‘z‘)~

On the other hand if 0 < j <7, we get

(1, T1,T1L2y ..., L1 """ ZL’j_l,ZL'l s ZL’j_H, .. ) = 92‘_1(1‘171’2, e ,[Ej[Ej_H, s ,CL’Z‘).
Finally if j = ¢ we get 6;_1(x1, 29, -+ ,2;). From these calculations, we see
that 6, 'd;0; is given by the advertized formula. O

4. If A is a G-module, let A® be the submodule consisting of all elements
v € A such that xv = v for allz € G. Thus A® (sometimes called the module
of invariants) has trivial G-action.

(a) Show that if H1(G,A) denotes the q-th homology of the complex
Homg(E, A), then HY(G, A) = AS. Thus the left derived functors of A — AY
are the homology groups of the complex Homg(E, A), or for that matter, of
the complex Homg(F, A), where F' is as in Ezercise 3.

(b) Show that the group of 1-cycles Z*(G, A) consists of those functions
f G — A satisfying

flzy) = f(x) +2f(y), fzy) = f(x) +2f(y), z,y€G. (4)

Show that the subgroup of coboundaries B'(G, A) consists of those functions
f for which theere exists an element a € A such that f(x) = za — a. The
factor group is then H (G, A).

(c) Show that the group of 2-cocycles Z*(G, A) consists of those functions
f: G —> A satisfying

flry) = f(z) +2fly), xyed.
v f(y,z) — f(zy,2) + f(z,y2) — f(z,y) = 0. (5)

Such 2-cocycles are also called factor sets, and they can be used to de-
scribe isomorphism classes of group extensions, as in Exercise 5.



Solution: In (b) and (c), Lang is using the resolution F. (Other resolu-
tions might be useful and give different descriptions.) For (a), note that
Homg(Z, A) = A®. Indeed, a G-module homomorphism ¢ : Z — A is
uniquely determined by ¢(1) which must be in A% because Z is a trivial
G-module. Therefore ¢ + ¢(1) is an isomorphism Homg(Z, A) — AC.

Since Homg(Z, —) is left exact, we see immediately that the functor A —
A% of invariants is left exact. Or prove this directly! We may use the
resolution F' to compute the derived functors, which are H4(G, A). In other
words, HY(G, A) = Ext,(Z, A). Now (a) is clear.

For (b), an element of ¢ € Hom(F", A) is determined by its values on the
basis elements (x) of F', with x € G. Thus we may think of f as just a map
G — A. The differential d : F> — F' maps (z,y) to z(y) — (xy) + (z) by
the formula in Exercise 3. Therefore df = 0 in Homg(F?, A) if and only if
xf(y) — f(zy) + f(z) = 0, which we recognize as the crossed-homomorphism
property (4). These are the cocycles Z'(G, A). To identify the coboundaries,
observe that the unique basis element of F is the empty sequence ¢ = ().
The map d; : F* — FY is the map

df (r) = xe — €.

Thus to @ € Hom(F", A) we may associate the element a = «(e), and we
have d;a(z) = za — a.
Finally for (c), the map d : F* — F? maps

(x,y, Z) — J?(y,Z) - (xy,z) + (x,yz) - (x,y)

Hence for f € Hom(F?, A) to be a cocycle, the condition df = 0 is exactly the
cocycle condition (5). We see in the same way that the map f: GxG — A
is a coboundary if and only if it has the form

f(2,y) = xh(y) — h(zy) + h(z) (6)
for some map h : G — A. This completes the solution to Problem 4.

For the following exercise we switch to multiplicative notation. Thus the
cocycle condition (5) may be rewritten

flry, 2) f(z,y) =" f(y, 2) f(z,y2). (7)

The cocycle is called normalized if f(1,1) = 1.
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Proposition 1. Every cocycle is equivalent to a normalized one. If f is a
normalized cocycle then for all t € G we have

f(Lt) = f(t7 1) =1, f(t’t_l) = tf(t_lat)' (8)

Proof. Cocycles are equivalent if they differ by a coboundary, which can be
an arbitrary function of the form

fo(z,y) ="h(y)h(y)/h(zy).

We may take h to be the constant function h(z) = f(1,1), so fo(1,1) =
f(1,1). Dividing by this coboundary gives an equivalent normalized cocycle.
Now in the cocycle relation (7) take x = ¢, y = z = 1 to get f(¢,1)f(¢t,1) =
f(1,1)f(t,1) and deduce that f(t,1) = 1; and similarly taking z =y = 1
and z = t gives f(1,¢) = 1. Finally we may take z = z =t and y = ¢! to
get f(l,t)f(t,t_l) = tf(t_lat>f<t7 1) S0 f(tat_l) = tf<t_17t)' [

5. Group extensions. Let W be a group and A a normal subgroup
written multiplicatively. We assume that A is abelian. (Lang doesn’t assume
this at least in some copies of Algebra, but this hypothesis is essential.) Let
G = W/A be the factor group. Let F' : G — W be a choice of coset
representatives. Define

flx,y) = F(x)F(y)F(xy) ™.

(a) Prove that f is A-valued and that F : G x G — A is a 2-cocycle.
(b) Given a group G and an abelian group A, we view an extension W as
an ezxact sequence
l—A—W-—G—1

Show that if two such extensions are isomorphic then the 2-cocycles associated
to these extensions define the same class in H (G, A).

(¢) Prove that the map we obtained above from the isomorphism classes
of group extensions to H*(G, A) is a bijection.

Solution. The action of G on A is by conjugation. Thus in multiplicative
notation,

“a = F(x)aF(x)™" (9)



Note that this action does not depend on the choice of representative F'(x)
because if we change the representative, we change it by an element of A,
and A is assumed abelian.

(a) A priori, f(x,y) is an element of W, but if we apply the projection
map 7 : W — G to it we get xy(zy)~' = 1. Thus f(z,y) is in the kernel
of m, which is A. To check the cocycle condition, since we are writing A
multiplicatively, and using the fact that A is abelian to move the terms
around, we need to check

“fly, 2) f(z,yz) = f(z,y)f(zy, 2). (10)

which is the condition (5) in multiplicative notation. The left-hand side
equals

“(F)F(2)F(yz) ) F(2)F(yz) F(ayz) " F(2)F(y) F(ay)
By (9) this equals
F(2)F(y)F(2)F(yz) ' F(z) " F(2)F(y2)F(zyz) ™" = F(2)F(y)F(2)F (zyz)~".

Similarly the right hand side of (10) also equals F'(z)F(y)F(z)F(zyz)~! and
(10) is proved.

We need to check that the cohomology class of this cocycle does not
depend on the choice of “section” F': G — W. If we change the section to
another one F’| then since F'(z) and F’(x) both must project back to x we
have F'(z) = ¢(x)F(x) where p(z) € A. Now consider

f'(x,y) = F'(a)F'(y) F'(zy) ",
This equals
p(x)F(2)p(y) F (y) F(zy)p(ey) ™ = p(x) - “o(y) F(2) F(y) F (zy)p(ry)

and since F(z)F(y)F(xy) and ¢(zy)~! are both in A, which is abelian, we
may write

flay) = folewy)f(z,y),  folz,y) =el@) “oly) - p(zy) "

Comparing this with (6), we see that fj is a coboundary, so f and f’ differ by a
coboundary, and we see that each extension determines a well-defined class in
Z*(G,A)/B*(G, A). The statement asked in (b), that if two such extensions
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are isomorphic then the 2-cocycles associated to these extensions define the
same class in H'(G, A) is now clear, because if 1 — A — W' — G — 1
is an equivalent extension then we may identify W with W’ and the only
issue is that the section F' might change, but we have already checked that
this only changes f by a coboundary.

(c) We must complement the construction above by showing how to start
with a 2-cocycle f and produce an extension 1 — A — W — G — 1.

We are permitted to change the 2-cocycle by a coboundary. We will
therefore assume that f is normalized. We define W to be the set of ordered
pairs (a,x) with a € A and x € G, with multiplication

(a’x)(b7 y) = (f(a:,y)a : xb? l‘y)

Let us check the associative law. We have

((a,2) (b, y)) (¢, 2) = (f(z,y)a - b xy)(c, 2) = (f(x,y) f(zy, 2)a - *b- e, xyz)

while

(a,2)((b,y)(c, 2)) = (a,2)(f(y, 2)-be, yz) = (f(z,y2)a - *(f(y, 2) - b-Yc), wyz) .

This equals
(f(z,y2)" fy,2)a-"b- e, xyz).

So if f satisfies the cocycle relation (10) we have

((a, 2)(b,9))(c, 2) = (a, 2)((b, y)(c, 2)),

confirming the associative law.

Since f is normalized, it is easy to check that (1, 1) serves as an identity el-
ement. We may also check the existence of inverses. Since (a,z) = (a,1)(1, )
it is sufficient to exhibit inverses for (a,1) and (1,x) separately. We have
(a,1)7!' = (a™*,1) while

(L)' = (f(zh2) 2. (11)

Indeed it is straightforward that (f(z~', z)~, 27 1)(1,2) = (1,1), while the
other identity

(17 x)(f(x_l, I)_la I_l) = (17 1)
can be checked using (8) or by exhibiting another right inverse and then
remembering that in a group, a left and right multiplicative inverse must
coincide.



We have proved that W is a group. The maps A — W in which a — (a, 1)
and W — G which is the projection on the second component give us a group
extension.

We need to relate this to our original construction. Choose the section
F:G — W in which F(z) = (1,z). We will prove that

F(x)F(y)F(zy)™" = f(z,y). (12)

Note that this will solve (c).
The left-hand side of (12) is

(L) (L) (f((zy) " ay) ™t (2y) ") = (f (@, 9), 29) (f ()~ 2y) ™ () 7).
Using (8) this equals
(f(@,y), 2y) (7 f(zy, (2y) ™) (2y) ™) = (fl@,y) f @y, (zy) ™) 7 flay, (2y) ), 1)

or (f(z,y),1). Since we are identifying A with its image in W, this proves
(12).



