Homework 7 Solutions

November 30, 2016

Problems 1-5 in Chapter 20 of Lang's Algebra.

1. Prove that the standard complex is actually a complex, and is exact, so that it gives a resolution of \mathbb{Z}.

Solution. To show that $d^{2}=0$, apply $d_{i-1} d_{i}$ to $\left(x_{0}, \cdots, x_{i}\right)$. The terms are of the form $\left(x_{0}, \cdots, \widehat{x_{j}}, \cdots, \widehat{x_{k}}, \cdots, x_{i}\right)$ because each application of d eliminates one term. Each term occurs twice (since we may eliminate the x_{j} and x_{k} in either order) and with opposite signs, so the cancel. This the standard complex is a complex, but we still have to show that $\operatorname{ker}\left(d_{i}\right) \subseteq$ $\operatorname{im}\left(d_{i+1}\right)$.

The standard resolution depends on the choice of a nonempty set S. Pick an element $z \in S$. Define a map $h: E^{i} \longrightarrow E^{i+1}$ that sends $\left(x_{0}, \cdots, x_{i}\right)$ to $\left(z, x_{0}, \cdots, x_{i}\right)$. Let us check that

$$
\begin{equation*}
d h+h d=1_{E_{i}} . \tag{1}
\end{equation*}
$$

Indeed, applying $h d$ to $\left(x_{0}, \cdots, x_{i}\right)$ gives

$$
\left(\hat{z}, x_{0}, \cdots, x_{i}\right)+\sum_{j=0}^{i}(-1)^{j+1}\left(z, x_{0}, \cdots, \widehat{x_{j}}, \cdots, x_{i}\right)
$$

where the hat denotes the omission of a term, so that the first term is really $\left(x_{0}, \cdots, x_{i}\right)$. Applying $h d$ to $\left(x_{0}, \cdots, x_{i}\right)$ gives

$$
\sum_{j=0}^{i}(-1)^{j}\left(z, x_{0}, \cdots, \widehat{x_{j}}, \cdots, x_{i}\right)
$$

Adding these two the terms cancel in pairs except one, proving (1).
Now we may prove that the complex is exact. Let $\xi \in \operatorname{ker}\left(d_{i}\right)$. Then by (1), $\xi=d_{i+1} h_{i}(\xi)+h_{i-1} d_{i}(\xi)=d_{i+1} h_{i}(\xi)$, so $\xi \in \operatorname{im}\left(d_{i+1}\right)$.
2. Let G be a group. Use G as the set S in the standard complex. Define an action of G on the standard complex by leting $x\left(x_{0}, \cdots, x_{i}\right)=\left(x x_{0}, \cdots, x x_{i}\right)$. Prove that each E^{i} is a free module over the group ring $\mathbb{Z}[G]$. Thus if we let $R=\mathbb{Z}[G]$ be the group ring and consider the category $\operatorname{Mod}(G)$ of G-modules, then the standard complex gives a free resolution of \mathbb{Z} in this category.
Solution. We say that a G-module A is trivial if $g x=g$ for all $g \in G$ and $x \in A$. Here \mathbb{Z} is a trivial G-module.

The abelian group E^{i} is the free \mathbb{Z}-module on $\mathbb{Z}[G]^{i+1}$. The elements $\left(x_{0}, \cdots, x_{i}\right)$ of $\mathbb{Z}[G]^{i+1}$ thus consist of a basis of E_{i} as a \mathbb{Z}-module. To see that E^{i} is free as a G-module, let $x_{1}, \cdots, x_{i} \in G$ and define $E^{i}\left(x_{1}, \cdots, x_{i}\right)$ to be the $\mathbb{Z}[G]$-submodule generated by $\left(1, x_{1}, \cdots, x_{i}\right)$. Then every basis element $\left(x_{0}, \cdots, x_{i}\right)$ lies in a unique such module, namely $E^{i}\left(x_{0}^{-1} x_{1}, \cdots, x_{0}^{-1} x_{i}\right)$. Therefore

$$
\begin{equation*}
E^{i}=\bigoplus_{\left(x_{1}, \cdots, x_{i}\right) \in \mathbb{Z}[G]^{i}} E_{i}\left(x_{1}, \cdots, x_{i}\right) \tag{2}
\end{equation*}
$$

and so E_{i} is a free $\mathbb{Z}[G]$-module with basis consisting of the elements $\left(1, x_{1}, \cdots, x_{i}\right)$.
Now consider the standard complex

$$
\ldots \longrightarrow E^{1} \longrightarrow E^{0} \longrightarrow \mathbb{Z} \longrightarrow 0
$$

It follows from the definitions of the maps $d_{i}: E^{i} \longrightarrow E^{i-1}$ and the augmentation map $\varepsilon: E^{0}=\mathbb{Z}[G] \longrightarrow \mathbb{Z}$ that these are all $\mathbb{Z}[G]$-module homomorphisms, so this is a free resolution of the trivial module \mathbb{Z}.

Problem 1 shows that the complex is exact, even though its proof makes use of a map h that is not a $\mathbb{Z}[G]$-module homomorphism!
3. The standard complex E was written in homogeneous form, so the boundary maps have a certain symmetry. There is another complex that exhibits useful features as follows. Let F^{i} be the free $\mathbb{Z}[G]$-module having for basis i-tuples (rather than $(i+1)$-tuples) $\left(x_{1}, \cdots, x_{i}\right)$ For $i=0$ we take $F_{0}=\mathbb{Z}[G]$ itself. Define the boundary operator

$$
\begin{gathered}
d\left(x_{1}, \cdots, x_{i}\right)=x_{1}\left(x_{2}, \cdots, x_{i}\right)+\sum_{j=1}^{i-1}(-1)^{j}\left(x_{1}, x_{2}, \cdots, x_{j} x_{j+1}, \cdots, x_{i}\right) \\
+(-1)^{i+1}\left(x_{1}, x_{2}, \cdots, x_{i-1}\right)
\end{gathered}
$$

(The last term is misprinted in some copies of Lang.) Show that $E \cong F$ as complexes of G-modules via the map $F^{i} \longrightarrow E^{i}$ in which

$$
\begin{equation*}
\left(x_{1}, \cdots, x_{i}\right) \mapsto\left(1, x_{1}, x_{1} x_{2}, \ldots, x_{1} \cdots x_{i}\right) \tag{3}
\end{equation*}
$$

Proof. Let $\theta_{i}: F^{i} \longrightarrow E^{i}$ be the map (3). It follows from (2) that θ_{i} maps the given basis of F^{i} onto a basis of E^{i}. Thus the map (3) is an isomorphism of $\mathbb{Z}[G]$-modules. We thus need to compute $\theta_{i}^{-1} d_{i} \theta_{i}$ and check that it has the advertized formula. Consider what happens when we omit the j-th component term from $\left(1, x_{1}, x_{1} x_{2}, \ldots, x_{1} \cdots x_{i}\right) \in E^{i}$. If $j=0$ we get

$$
\left(x_{1}, x_{1} x_{2}, \ldots, x_{1} \cdots x_{i}\right)=x_{i}\left(1, x_{2}, \cdots, x_{2} \cdots x_{i}\right)=x_{i} \theta_{i-1}\left(x_{2}, \cdots, x_{i}\right)
$$

On the other hand if $0<j<i$, we get

$$
\left(1, x_{1}, x_{1} x_{2}, \ldots, x_{1} \cdots x_{j-1}, x_{1} \cdots x_{j+1}, \ldots\right)=\theta_{i-1}\left(x_{1}, x_{2}, \cdots, x_{j} x_{j+1}, \cdots, x_{i}\right)
$$

Finally if $j=i$ we get $\theta_{i-1}\left(x_{1}, x_{2}, \cdots, x_{i}\right)$. From these calculations, we see that $\theta_{i}^{-1} d_{i} \theta_{i}$ is given by the advertized formula.
4. If A is a G-module, let A^{G} be the submodule consisting of all elements $v \in A$ such that $x v=v$ for all $x \in G$. Thus A^{G} (sometimes called the module of invariants) has trivial G-action.
(a) Show that if $H^{q}(G, A)$ denotes the q-th homology of the complex $\operatorname{Hom}_{G}(E, A)$, then $H^{0}(G, A)=A^{G}$. Thus the left derived functors of $A \mapsto A^{G}$ are the homology groups of the complex $\operatorname{Hom}_{G}(E, A)$, or for that matter, of the complex $\operatorname{Hom}_{G}(F, A)$, where F is as in Exercise 3.
(b) Show that the group of 1-cycles $Z^{1}(G, A)$ consists of those functions $f: G \longrightarrow A$ satisfying

$$
\begin{equation*}
f(x y)=f(x)+x f(y), f(x y)=f(x)+x f(y), \quad x, y \in G \tag{4}
\end{equation*}
$$

Show that the subgroup of coboundaries $B^{1}(G, A)$ consists of those functions f for which theere exists an element $a \in A$ such that $f(x)=x a-a$. The factor group is then $H^{1}(G, A)$.
(c) Show that the group of 2-cocycles $Z^{2}(G, A)$ consists of those functions $f: G \longrightarrow A$ satisfying

$$
\begin{gather*}
f(x y)=f(x)+x f(y), \quad x, y \in G . \\
x f(y, z)-f(x y, z)+f(x, y z)-f(x, y)=0 . \tag{5}
\end{gather*}
$$

Such 2-cocycles are also called factor sets, and they can be used to describe isomorphism classes of group extensions, as in Exercise 5.

Solution: In (b) and (c), Lang is using the resolution F. (Other resolutions might be useful and give different descriptions.) For (a), note that $\operatorname{Hom}_{G}(\mathbb{Z}, A) \cong A^{G}$. Indeed, a G-module homomorphism $\phi: \mathbb{Z} \longrightarrow A$ is uniquely determined by $\phi(1)$ which must be in A^{G} because \mathbb{Z} is a trivial G-module. Therefore $\phi \mapsto \phi(1)$ is an isomorphism $\operatorname{Hom}_{G}(\mathbb{Z}, A) \longrightarrow A^{G}$.

Since $\operatorname{Hom}_{G}(\mathbb{Z},-)$ is left exact, we see immediately that the functor $A \mapsto$ A^{G} of invariants is left exact. Or prove this directly! We may use the resolution F to compute the derived functors, which are $H^{q}(G, A)$. In other words, $H^{q}(G, A)=\operatorname{Ext}_{q}(\mathbb{Z}, A)$. Now (a) is clear.

For (b), an element of $\phi \in \operatorname{Hom}\left(F^{1}, A\right)$ is determined by its values on the basis elements (x) of F, with $x \in G$. Thus we may think of f as just a map $G \longrightarrow A$. The differential $d: F^{2} \longrightarrow F^{1}$ maps (x, y) to $x(y)-(x y)+(x)$ by the formula in Exercise 3. Therefore $d f=0$ in $\operatorname{Hom}_{G}\left(F^{2}, A\right)$ if and only if $x f(y)-f(x y)+f(x)=0$, which we recognize as the crossed-homomorphism property (4). These are the cocycles $Z^{1}(G, A)$. To identify the coboundaries, observe that the unique basis element of F^{0} is the empty sequence $\epsilon=()$. The map $d_{i}: F^{1} \longrightarrow F^{0}$ is the map

$$
d f(x)=x \epsilon-\epsilon .
$$

Thus to $\alpha \in \operatorname{Hom}\left(F^{0}, A\right)$ we may associate the element $a=\alpha(\epsilon)$, and we have $d_{i} \alpha(x)=x a-a$.

Finally for (c), the map $d: F^{3} \longrightarrow F^{2}$ maps

$$
(x, y, z) \rightarrow x(y, z)-(x y, z)+(x, y z)-(x, y)
$$

Hence for $f \in \operatorname{Hom}\left(F^{2}, A\right)$ to be a cocycle, the condition $d f=0$ is exactly the cocycle condition (5). We see in the same way that the map $f: G \times G \longrightarrow A$ is a coboundary if and only if it has the form

$$
\begin{equation*}
f(x, y)=x h(y)-h(x y)+h(x) \tag{6}
\end{equation*}
$$

for some map $h: G \longrightarrow A$. This completes the solution to Problem 4.
For the following exercise we switch to multiplicative notation. Thus the cocycle condition (5) may be rewritten

$$
\begin{equation*}
f(x y, z) f(x, y)={ }^{x} f(y, z) f(x, y z) \tag{7}
\end{equation*}
$$

The cocycle is called normalized if $f(1,1)=1$.

Proposition 1. Every cocycle is equivalent to a normalized one. If f is a normalized cocycle then for all $t \in G$ we have

$$
\begin{equation*}
f(1, t)=f(t, 1)=1, \quad f\left(t, t^{-1}\right)={ }^{t} f\left(t^{-1}, t\right) \tag{8}
\end{equation*}
$$

Proof. Cocycles are equivalent if they differ by a coboundary, which can be an arbitrary function of the form

$$
f_{0}(x, y)={ }^{x} h(y) h(y) / h(x y) .
$$

We may take h to be the constant function $h(x)=f(1,1)$, so $f_{0}(1,1)=$ $f(1,1)$. Dividing by this coboundary gives an equivalent normalized cocycle. Now in the cocycle relation (7) take $x=t, y=z=1$ to get $f(t, 1) f(t, 1)=$ $f(1,1) f(t, 1)$ and deduce that $f(t, 1)=1$; and similarly taking $x=y=1$ and $z=t$ gives $f(1, t)=1$. Finally we may take $x=z=t$ and $y=t^{-1}$ to get $f(1, t) f\left(t, t^{-1}\right)={ }^{t} f\left(t^{-1}, t\right) f(t, 1)$ so $f\left(t, t^{-1}\right)={ }^{t} f\left(t^{-1}, t\right)$.
5. Group extensions. Let W be a group and A a normal subgroup written multiplicatively. We assume that A is abelian. (Lang doesn't assume this at least in some copies of Algebra, but this hypothesis is essential.) Let $G=W / A$ be the factor group. Let $F: G \longrightarrow W$ be a choice of coset representatives. Define

$$
f(x, y)=F(x) F(y) F(x y)^{-1}
$$

(a) Prove that f is A-valued and that $F: G \times G \longrightarrow A$ is a 2-cocycle.
(b) Given a group G and an abelian group A, we view an extension W as an exact sequence

$$
1 \longrightarrow A \longrightarrow W \longrightarrow G \longrightarrow 1
$$

Show that if two such extensions are isomorphic then the 2-cocycles associated to these extensions define the same class in $H^{1}(G, A)$.
(c) Prove that the map we obtained above from the isomorphism classes of group extensions to $H^{2}(G, A)$ is a bijection.
Solution. The action of G on A is by conjugation. Thus in multiplicative notation,

$$
\begin{equation*}
{ }^{x} a=F(x) a F(x)^{-1} . \tag{9}
\end{equation*}
$$

Note that this action does not depend on the choice of representative $F(x)$ because if we change the representative, we change it by an element of A, and A is assumed abelian.
(a) A priori, $f(x, y)$ is an element of W, but if we apply the projection map $\pi: W \longrightarrow G$ to it we get $x y(x y)^{-1}=1$. Thus $f(x, y)$ is in the kernel of π, which is A. To check the cocycle condition, since we are writing A multiplicatively, and using the fact that A is abelian to move the terms around, we need to check

$$
\begin{equation*}
{ }^{x} f(y, z) f(x, y z)=f(x, y) f(x y, z) . \tag{10}
\end{equation*}
$$

which is the condition (5) in multiplicative notation. The left-hand side equals

$$
{ }^{x}\left(F(y) F(z) F(y z)^{-1}\right) F(x) F(y z) F(x y z)^{-1} \cdot F(x) F(y) F(x y)
$$

By (9) this equals
$F(x) F(y) F(z) F(y z)^{-1} F(x)^{-1} \cdot F(x) F(y z) F(x y z)^{-1}=F(x) F(y) F(z) F(x y z)^{-1}$.
Similarly the right hand side of (10) also equals $F(x) F(y) F(z) F(x y z)^{-1}$ and (10) is proved.

We need to check that the cohomology class of this cocycle does not depend on the choice of "section" $F: G \longrightarrow W$. If we change the section to another one F^{\prime}, then since $F(x)$ and $F^{\prime}(x)$ both must project back to x we have $F^{\prime}(x)=\varphi(x) F(x)$ where $\varphi(x) \in A$. Now consider

$$
f^{\prime}(x, y)=F^{\prime}(x) F^{\prime}(y) F^{\prime}(x y)^{-1}
$$

This equals

$$
\varphi(x) F(x) \varphi(y) F(y) F(x y) \varphi(x y)^{-1}=\varphi(x) \cdot{ }^{x} \varphi(y) F(x) F(y) F(x y) \varphi(x y)^{-1}
$$

and since $F(x) F(y) F(x y)$ and $\varphi(x y)^{-1}$ are both in A, which is abelian, we may write

$$
f^{\prime}(x, y)=f_{0}(x, y) f(x, y), \quad f_{0}(x, y)=\varphi(x) \cdot{ }^{x} \varphi(y) \cdot \varphi(x y)^{-1}
$$

Comparing this with (6), we see that f_{0} is a coboundary, so f and f^{\prime} differ by a coboundary, and we see that each extension determines a well-defined class in $Z^{2}(G, A) / B^{2}(G, A)$. The statement asked in (b), that if two such extensions
are isomorphic then the 2-cocycles associated to these extensions define the same class in $H^{1}(G, A)$ is now clear, because if $1 \longrightarrow A \longrightarrow W^{\prime} \longrightarrow G \longrightarrow 1$ is an equivalent extension then we may identify W with W^{\prime}, and the only issue is that the section F might change, but we have already checked that this only changes f by a coboundary.
(c) We must complement the construction above by showing how to start with a 2-cocycle f and produce an extension $1 \longrightarrow A \longrightarrow W \longrightarrow G \longrightarrow 1$.

We are permitted to change the 2 -cocycle by a coboundary. We will therefore assume that f is normalized. We define W to be the set of ordered pairs (a, x) with $a \in A$ and $x \in G$, with multiplication

$$
(a, x)(b, y)=\left(f(x, y) a \cdot{ }^{x} b, x y\right)
$$

Let us check the associative law. We have
$((a, x)(b, y))(c, z)=\left(f(x, y) a \cdot{ }^{x} b, x y\right)(c, z)=\left(f(x, y) f(x y, z) a \cdot{ }^{x} b \cdot{ }^{x y} c, x y z\right)$
while
$(a, x)((b, y)(c, z))=(a, x)\left(f(y, z) \cdot b \cdot{ }^{y} c, y z\right)=\left(f(x, y z) a \cdot{ }^{x}\left(f(y, z) \cdot b \cdot{ }^{y} c\right), x y z\right)$.
This equals

$$
\left(f(x, y z)^{x} f(y, z) a \cdot{ }^{x} b \cdot{ }^{x y} c, x y z\right) .
$$

So if f satisfies the cocycle relation (10) we have

$$
((a, x)(b, y))(c, z)=(a, x)((b, y)(c, z))
$$

confirming the associative law.
Since f is normalized, it is easy to check that $(1,1)$ serves as an identity element. We may also check the existence of inverses. Since $(a, x)=(a, 1)(1, x)$ it is sufficient to exhibit inverses for $(a, 1)$ and $(1, x)$ separately. We have $(a, 1)^{-1}=\left(a^{-1}, 1\right)$ while

$$
\begin{equation*}
(1, x)^{-1}=\left(f\left(x^{-1}, x\right)^{-1}, x^{-1}\right) \tag{11}
\end{equation*}
$$

Indeed it is straightforward that $\left(f\left(x^{-1}, x\right)^{-1}, x^{-1}\right)(1, x)=(1,1)$, while the other identity

$$
(1, x)\left(f\left(x^{-1}, x\right)^{-1}, x^{-1}\right)=(1,1)
$$

can be checked using (8) or by exhibiting another right inverse and then remembering that in a group, a left and right multiplicative inverse must coincide.

We have proved that W is a group. The maps $A \rightarrow W$ in which $a \mapsto(a, 1)$ and $W \rightarrow G$ which is the projection on the second component give us a group extension.

We need to relate this to our original construction. Choose the section $F: G \longrightarrow W$ in which $F(x)=(1, x)$. We will prove that

$$
\begin{equation*}
F(x) F(y) F(x y)^{-1}=f(x, y) \tag{12}
\end{equation*}
$$

Note that this will solve (c).
The left-hand side of (12) is
$(1, x)(1, y)\left(f\left((x y)^{-1}, x y\right)^{-1},(x y)^{-1}\right)=(f(x, y), x y)\left(f\left((x y)^{-1}, x y\right)^{-1},(x y)^{-1}\right)$.
Using (8) this equals
$(f(x, y), x y)\left({ }^{(x y)^{-1}} f\left(x y,(x y)^{-1}\right)^{-1},(x y)^{-1}\right)=\left(f(x, y) f\left(x y,(x y)^{-1}\right)^{-1} f\left(x y,(x y)^{-1}\right), 1\right)$ or $(f(x, y), 1)$. Since we are identifying A with its image in W, this proves (12).

