
Homework 4 Solutions

November 11, 2016

You were asked to do problems 3,4,7,9,10 in Chapter 7 of Lang.
Problem 3. Let A be an integral domain, integrally closed in its field

of fractions K. Let L be a finite separable extension of K and let B be
the integral closure of A in L. If A is Noetherian, show that B is a finitely
generated A-module.

Solution.

Lemma 1 If x ∈ L then tx ∈ B for some t ∈ A.

Proof Since L/K is algebraic, x satisfies a polynomial

xn + an−1x
n−1 + . . .+ a0 = 0

with coefficients in K. Thus y = tx satisfies the polynomial

yn + bn−1x
n−1 + . . .+ b0, bn−i = tian−i.

Taking t to be the product of the denominators of the ak written as fractions
in A, we can arrange that the bk ∈ A. Hence tx ∈ B. �

Lemma 2 If t ∈ B then tr(t) ∈ A.

Proof Since t is integral over A it is the root of a monic polynomial f with
coefficients in A. The conjugates of t also satisfy this polynomial, so they
are also integral over A. Thus the conjugates of t are in B. The trace tr(t)
is the sum of the conjugates of t, so it is in B. However by Theorem VI.5.1
on page 285 of Lang, tr(t) ∈ K. Since A is integrally closed B ∩K = A and
so tr(t) ∈ A. �
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Let ω1, · · · , ωn be a basis of L. By the Lemma, we may assume that
ωi ∈ B. Now consider the trace bilinear form. By Theorem VI.5.2 on page
286 of Lang, this form identifies L with its dual space, so there is a dual basis
ω′i such that tr(ωiω

′
j) = δij (Kronecker delta).

Now consider the A-module M generated by ω′i. Then B ⊆ M because
if x ∈ B then we may write x =

∑
ciω
′
i and tr(cωi) =

∑
tr(cjωjω

′
i) = ci.

Thus ci ∈ A and x ∈ M . We see that B is a submodule of the finitely-
generated module M . Because A is Noetherian, it follows that B is also
finitely-generated.

Problem 4. Let L be a finite extension of Q and let oL be the ring of
algebraic integers in L. Let σ1, · · · , σn be the distinct embeddings of L into
C. Embed L into a Euclidean space by

α 7−→ (α1, · · · , αn).

Show that any bounded region of space there are only a finite number of
elements of oL. Use Exercise 5 of Chapter III to conclude that oL is a free
Z-module of dimension 6 n. In fact, show that the dimension is n, a basis
of oL over Z being also a basis of L over Q.

Solution (following the hints in the book). Let ei (i 6 n) be the i-th
elementary symmetric polynomial, so

ei(x1, · · · , xn) =
∑

16k1<···<ki6n

xk1 · · ·xkn .

If α ∈ oL, then α is a root of the polynomial

f(x) = 0, f(x) = xn + an−1(α)xn−1 + . . .+ a0(α)

where
an−i(α) = (−1)iei(σ1α, · · · , σnα).

This formula shows that the coefficient an−i, regarded as a function of α,
extends to a polynomial function on Cn, namely the function (−1)iei. For
α ∈ oL, On the other hand, an−i(α) is integral over Z (since each σiα is
integral) and they are invariant under the Galois group of the normal closure
of L over Q, and so αn−i(α) ∈ Q. Therefore an−i(α) ∈ Q ∩ oL = Z.

So if K is a bounded region in Cn, on the set K the function an−i takes
bounded values. There are thus only a finite number of possible polynomials
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f(x) ∈ Z[x] and therefore oL ∩ K is finite. We see that oL is a discrete
subgroup of a Euclidean space, hence it is finitely generated as an abelian
group, and therefore free.

To see that the rank of oL is exactly n, it is sufficient to show that a basis
of oL as a Z-module is a basis of L as a vector space. This is similar to the
arguments in the preceding exercise.

Problem 7 (Dedekind Domains). The usual definition of a Dedekind
domain is a commutative domain that is Noetherian, integrally closed and of
Krull dimension one which means that every nonzero prime ideal is maximal.
These are rings that include principal ideal domains, and are “almost as
good” as principal ideal domains. They come up frequently, for example, let
K be an algebraic number field (a finite extension of Q). Then the integral
closure of Z in K is called the ring of integers and it is a Dedekind domain.

Assume that o is Noetherian, integrally closed and of Krull dimension
one which means that every nonzero prime ideal is maximal. Let K be its
field of fractions.

(a) Given an ideal a of o prove that there exists a product of nonzero
prime ideals p1, · · · , pr such that p1 · · · pr ⊆ a.

(b) Every maximal ideal p is invertible by a fractional ideal. Thus if

p−1 = {x ∈ K|xp ⊆ o}

then p−1 is a fractional ideal and pp−1 = o.
(c) Every nonzero ideal is invertible.

Solution. (a) Since o is Noetherian, any nonzero set of ideals has a
maximal element. So we may assume that a is an ideal that is maximal
with respect to the assumption that it does not contain a product of nonzero
ideals. Obviously a cannot be prime, so find x, y ∈ o such that x, y /∈ a
but xy ∈ a. Then a + ox is strictly larger than a so it contains a product
of prime ideals: p1 · · · pr ⊆ a + ox. Similarly pr+1 · · · ps ⊆ a + oy. But
then p1 · · · pr · pr+1 · · · ps ⊆ (a + ox)(a + oy) ⊆ a since xy ∈ o. This is a
contradiction.

(b) Clearly pp−1 ⊆ o so it is an ideal. If it is not equal to o then it is a
proper ideal. It contains p since 1 ∈ p−1. Therefore we must have pp−1 ⊆ p.
Now if x ∈ p−1 then xp ⊆ p so p is an o[x]-module that is faithful (since o is
a domain) and finitely generated as an o-module since o is Noetherian. By
INT3 on page 334, it follows that x is integral over o and since o is integrally
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closed we must have x ∈ o. Thus we will have a contradiction if we can show
p−1 * o.

Arguing by contradiction assume p−1 ⊆ o. Choose y ∈ p, y 6= o. By (a)
we have a product p1 · · · pr ⊆ oy. Arguing by induction, assume r is as small
as possible. One of the pi must equal p because otherwise we could choose
xi ∈ pi − p and then

∏
xi ∈

∏
pi ⊆ oy ⊆ p, which is a contradiction since p

is prime. So assume that pr = p. Then

y−1p1 · · · pr−1 · p ⊆ o ⇒ y−1p1 · · · pr−1 ⊆ p−1 ⊆ o.

So p1 · · · pr−1 ⊆ oy which contradicts the minimality of r.
(c) Let a be a nonzero ideal that is not invertible. Since o is Noethe-

rian, take a to be maximal with this property, and let p be a maximal ideal
containing a. Then p ⊆ a and so o = pp−1 ⊆ p−1a. Therefore p−1a is an
ideal. We claim that p−1a is strictly larger than a. If not, p−1a = a and
so if x ∈ p−1 then a is a faithful o[x] module that is finitely generated as
an o-module so again by INT3, x is integral over the integrally closed ring
o proving p−1 ⊆ o. But we have already shown that this is not true in our
proof of (b).

So p−1a is an ideal that is strictly larger than a and by induction it is
invertible. Thus a = p · p−1a is invertible.

9. Let A be an integral domain. Let B be an integral domain that is
integral over A. Let Q1 and Q2 be prime ideals of B with Q1 ⊃ Q2 and
Q1 6= Q2. Prove that if Pi = Qi ∩ A then P1 6= P2.

Note: Lang assumes that A is integrally closed but it appears that this
assumption is unnecessary. Because Lang states an unnecessary hypothesis
I am writing this up in greater detail than one usually would.

Solution. Assume that P1 = P2. Call this prime ideal P . Let S = A−P .
Let us check that

S−1Qi ∩ S−1A = S−1P.

If q ∈ Qi and s ∈ S such that q/s ∈ S−1A then q/s = a/t for a ∈ A and
t ∈ T . Then qt = as ∈ A∩Qi, that is qt ∈ P and since t /∈ P and P is prime
we have q ∈ P . So q/s ∈ S−1P .

Now S−1P is the maximal ideal of the local ring S−1A. Since S−1B is
integral over S−1A (Proposition 1.8) we may invoke Proposition 1.11 (page
339) to conclude that S−1Q2 is maximal and so S−1Q1 = S−1Q2. Now let
q ∈ Q1. Then q ∈ S−1Q2 so q = q2/s for some s ∈ S and therfore qs ∈ Q2.
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Now s /∈ P and so s /∈ Q2. Since Q2 is prime it follos that q ∈ Q2. We have
proved Q1 ⊆ Q2 and so Q1 = Q2.

10. Let n be a positive integer and let ζ, ζ ′ be primitive n-th roots of
unity.

(a) Show that (1− ζ)/(1− ζ ′) is an algebraic integer.
(b) If n > 6 is divisible by at least two primes, show that 1− ζ is a unit

in the ring Z[ζ].

For (b) I said to assume that n = pq is a product of two distinct primes.
This makes the problem slightly easier.

Solution. (a) Since ζ ′ is a primitive n-th root of unity, ζ is a power of
ζ ′, that is, ζ = (ζ ′)m for some m. Now

1− ζ
1− ζ ′

=
1− (ζ ′)m

1− ζ ′
= 1 + ζ ′ + (ζ ′)2 + · · · (ζ ′)m−1.

Thus 1−ζ
1−ζ′ is in the ring generated by ζ ′, and since ζ ′ is integral over Z, so is

this ratio. That is, it is an algebraic integer.
(b) We first prove, with ζm = e2πi/m that

m−1∏
i=1

(
1− ζ im

)
= m. (1)

Indeed, the polynomial Xm − 1 has roots ζ im for i = 0, 1, · · · ,m− 1 and so

Xm − 1 =
m−1∏
i=0

(X − ζ im).

Dividing by the i = 0 factor

m−1∏
i=1

(X − ζ im) =
Xm − 1

X − 1
= Xm−1 +Xm−2 + . . .+ 1

and substituting X = 1 gives (1).
Now we prove that

pq−1∏
i = 1

(p, i) = 1
(q, i) = 1

(1− ζ ipq) = 1. (2)
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This equals ∏pq
i=1(1− ζ ipq)[∏p

i=1(1− ζ
qi
pq)
] [∏q

i=1(1− ζ
pi
pq)
]

since the factors on the right that are not in the denominator are exactly
those with i prime to both p and q. Recognizing that ζqpq = ζp this equals∏pq

i=1(1− ζ ipq)[∏p
i=1(1− ζ ip)

] [∏q
i=1(1− ζ iq)

] =
pq

p · q
= 1

where all three factors are evaluated using (1).
Now one of the factors in (2) is 1− ζ, and the others are in Z[ζ], proving

that 1− ζ is a unit.
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