
Homework 5 Solutions

November 3, 2016

We discussed Tor in the lecture. The functor Ext is similar and is the subject of this homework.
While Tor is the derived functor of the right exact functor ⊗, Ext is the derived functor of the left
exact functor Hom.

In the following I use � to mark the end of a solution.

Problem 1. The functor Hom(A,B) is left exact. Since it is contravariant in A, it is worth writing
out what this means. Given short exact sequences

A′
f−→A

g−→A′′ −→ 0

and
0 −→B′ h−→B

k−→B′′

we have short exact sequences

0 −→ Hom(A′′, B)
g∗−→Hom(A,B)

f∗−→Hom(A′, B)

and
0 −→Hom(A,B′) −→ Hom(A,B) −→ Hom(A,B′′).

Prove the exactness of the first.

Solution. If ρ : C −→ D is any homomorphism, let

ρ∗ : Hom(D,B) −→ Hom(C,B)

be composition with ρ. That is, ρ∗(φ) = φ ◦ ρ for φ : D −→ B. First, the injectivity of g∗ :
Hom(A′′, B) −→ Hom(A,B) follows from the surjectivity of g. It is also clear that f∗ ◦ g∗ =
(gf)∗ = 0 since g ◦ f = 0. What remains to be checked is that if ϕ ∈ Hom(A,B) and f∗(ϕ) = 0
then ϕ is in the image of g∗. Indeed, since ϕ ◦ f = 0, the map ϕ vanishes on the image of f , which
is the kernel of g. We may define a map ψ : A′′ −→ B as follows. Since g is surjective, every
element of A′′ is of the form g(a) for some a ∈ A, and so we define ψ(a′′) = ϕ(a) if a′′ = g(a). Since
ker(g) ⊆ ker(ϕ) this is well-defined and g∗(ψ) = ψ ◦ g = ϕ, proving exactness. �

All modules are over a fixed commutative ring. Like Tor, there are two definitions of Ext.
To define Ext(A,B), we may start with a projective presentation of A, that is, a short exact

sequence 0 −→ R −→ P
α−→A −→ 0. Alternatively we may start with a short exact sequence

0 −→ B
β−→ I −→ Q −→ 0 with I injective. Part of the problem is to show that the two resulting
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(bi)functors are naturally isomorphic. Until this is established, we have to distinguish the two
functors, and we will invent a notation for this. We will define Ext(Aα, B) to be the cokernel of
the natural homomorphism Hom(P,B) −→ Hom(R,B), and we will define Ext(A,Bβ) to be the
cokernel of the natural homomorphism Hom(A, I) −→ Hom(A,Q).

Problem 2. Suppose that 0 −→ B′ −→ B −→ B′′ −→ 0 is exact. Prove that we have an exact
sequence:

0 −→ Hom(A,B′) −→ Hom(A,B) −→ Hom(A,B′′) −→ Ext(Aα, B
′) −→

Ext(Aα, B) −→ Ext(Aα, B
′′)

Solution. Consider the diagram:

0 0 0
↓ ↓ ↓

0 −→ Hom(A,B′) −→ Hom(A,B) −→ Hom(A,B′′)
↓ ↓ ↓

0 −→ Hom(P,B′) −→ Hom(P,B) −→ Hom(P,B′′)
↓ µ ↓ ν ↓ ω

0 −→ Hom(R,B′) −→ Hom(R,B) −→ Hom(R,B′′)
↓ ↓ ↓

Ext(Aα, B
′) −→ Ext(Aα, B) −→ Ext(Aα, B

′′)
↓ ↓ ↓
0 0 0

The rows and columns are exact, so we can identify Hom(A,B′) = ker(µ) and Ext(Aα, B) =
coker(µ), etc. The statement then follows from the Snake Lemma. �

We consider the diagram

0 −→ Hom(Aα, B
′) −→ Hom(Aα, B) −→ Hom(Aα, B

′′) −→ 0

Problem 3. Suppose 0 −→ A′ −→ A −→ A′′ −→ 0 is exact. 0 −→ R −→ P
α−→A −→ 0.

Alternatively we may start with a short exact sequence 0 −→ B
β−→ I −→ Q −→ 0 with I injective.

Write down a similar seven term exact sequence involving Ext(A,Bβ). You do not have to prove
it. (Or prove it using at most two words, one of them “Lemma.”)

Solution.

0 −→Hom(A′′, B) −→ Hom(A,B) −→ Hom(A′, B) −→ Ext(A′′, Bβ) −→

−→ Ext(A,Bβ) −→ Ext(A′, Bβ). Snake! �
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Our next goal is to show that Ext(A,Bβ) is functorial and independent of β. Let B and B′ be given,
with embeddings β : B −→ I and β′ : B′ −→ I ′ into injective modules. Suppose f : B −→ B′ is
given. Let Q = I/β(B) and similarly Q′. Using the injectivity of I we may find maps φ : I −→ I ′

and φ̄ : Q −→ Q′ such that the following diagram commutes:

0 −→ B −→ I −→ Q −→ 0
↓ f ↓ φ ↓ φ̄

0 −→ B′ −→ I ′ −→ Q′ −→ 0
(1)

Thus we get a diagram

0 −→ Hom(A,B) −→ Hom(A, I) −→ Hom(A,Q) −→ Ext(A,Bβ)
↓ ↓ φ ↓ φ̄

0 −→ Hom(A,B′) −→ Hom(A, I ′) −→ Hom(A,Q′) −→ Ext(A,B′β′)

The map φ̄ induces a map f̄ : Ext(A,Bβ) −→ Ext(A,B′β′).

4. (a) Show that this induced map does not depend on the choice of φ.
(b) Explain why (and in what sense) this implies that Ext(A,Bβ) does not depend on the

injective embedding β.
(c) Show that Ext(A,B) defined by injective embeddings of B is a functor. (It is actually a

bifunctor but I’m only asking you to show, with A fixed, that is functorial in B.)
(d) Do the same considerations apply without change for any left exact functor F instead of the

special case FB = Hom(A,B)?

Solution.
(a) As we saw in the lectures with right exact functors, the key to this uniqueness is the notion

of chain homotopy, which we encounter again in another simple form.
Suppose we have two different choices of φ, say φ = φ1 and φ2. Let φ0 = φ1 − φ2. Then since

φ1 and φ2 induce the same map f on B, the following diagram commutes:

0 −→ B
β−→ I

p−→ Q −→ 0
↓ 0 ↓ φ0 ↙ h ↓ φ̄0

0 −→ B′
β′−→ I ′

p′−→ Q′ −→ 0

where the map h : Q −→ I ′ has to be explained. The map p is surjective, so every element q of Q
equals p(x) for some x ∈ I. We can define h(q) = φ0(x) provided we check that this is well-defined.
If p(x′) = q also, then x− x′ are in the kernel of p, hence x− x′ = β(b) for some b, and since φ0 ◦ β
is the zero map we have φ0(x) = φ0(x′). Thus there is a well-defined map h such that h ◦ p = φ0.

Now consider:

0 −→ Hom(A,B) −→ Hom(A, I) −→ Hom(A,Q)
π−→ Ext(A,Bβ)

↓ 0 ↓ (φ0)∗ ↙ h∗ ↓ (φ0)∗ ↓ t

0 −→ Hom(A,B′) −→ Hom(A, I ′)
p′∗−→ Hom(A,Q′)

π′−→ Ext(A,B′β′)

Here if ψ : X −→ Y is any map, I’m denoting by ψ∗ : Hom(A,X) −→ Hom(B,X) the map induced
by composition with ψ; that is, ψ∗(f) = ψ ◦ f for f ∈ Hom(A,X). We are required to check that
the induced map Ext(A,Bβ) −→ Ext(A,B′β) is zero. Indeed, denoting this map t, we see that

tπ = π′(φ0)∗ = π′ ◦ p′∗ ◦ h∗ = 0. �.

3



(b) Suppose we choose another injective embedding β′ : B −→ I ′. Applying the above con-
struction to the identity map B −→ B gives us an induced map Ext(A,Bβ) −→ Ext(A,Bβ′).
Similarly we have an induced map Ext(A,Bβ′) −→ Ext(A,Bβ). We will argue that these are
inverse isomorphisms.

Let i : B −→ I and i′ : B −→ I ′ be injective embeddings. Using the injectivity of I, extend i′

to a map φ : I −→ I ′, and using the injectivity of I ′ extend i to a map ψ : I ′ −→ I. We do not
know that φ and ψ are inverses of each other; they probably are not. However we let

f : Ext(A,Bβ) −→ Ext(A,B′β′) and g : Ext(A,B′β′) −→ Ext(A,Bβ)

be the induced maps. These we will argue are inverse homomorphisms. To show that gf =
1Ext(A,Bβ) we use part (a) as follows. We have two different maps I −→ I that make the following
diagram commute, namely either ψφ or 1I :

0 −→ B
β−→ I

↓ 1B ↓
0 −→ B

β−→ I

We use these in place of φ, φ′ in (a) with B′ = B. Since by (a) they induce the same endomorphism
of Ext(A,Bβ) we conclude that gf = 1Ext(A,Bβ) and similarly fg = 1Ext(A,Bβ′ )

. �

(c) We will describe a functor F from R-modules to R-modules such that FB ∼= Ext(A,B) for
all B.

For each object B in the category of R-modules we choose and fix an injective embedding
β : B −→ I. (To avoid set theoretic difficulties, this should be done in a canonical way, but this is
a secondary detail.)

Then we can define F = Ext(A,Bβ).
If f : B −→ B′ is any homomorphism, then by (a) there is a unique homomorphism Ff making

the following diagram commute, where φ : I −→ I ′

0 −→ Hom(A,B) −→ Hom(A, I) −→ Hom(A,Q)
π−→ Ext(A,Bβ)

↓ f∗ ↓ φ∗ ↓ ↓ Ff

0 −→ Hom(A,B′) −→ Hom(A, I ′)
p′∗−→ Hom(A,Q′)

π′−→ Ext(A,B′β′)

To verify that F is a functor, let us show that if g : B′ −→ B′′ is another homomorphism then
F(g ◦ f) = Fg ◦ Ff , consider the following diagram:

0 −→ Hom(A,B) −→ Hom(A, I) −→ Hom(A,Q)
π−→ Ext(A,Bβ)

↓ (g ◦ f)∗ ↓ ↓ ↓

0 −→ Hom(A,B′′) −→ Hom(A, I ′′)
p′∗−→ Hom(A,Q′′)

π′−→ Ext(A,B′′β′′)

Both maps F(g ◦ f) and Fg ◦ Ff make the diagram commute, so by the uniqueness in (a), they
are the same map. �

(d) Yes.
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We proved the following in class. Let

0 −→ A′
f−→A

g−→A′′ −→ 0

be exact. Find presentations 0 −→ R′ −→ P ′
α′−→A′ −→ 0 and 0 −→ R′′ −→ P ′′

α′′−→A′′ −→ 0 with
P ′ and P ′′ projective. Let P be P ′ ⊕ P ′′ and consider the short exact sequence

0 −→ P ′
i−→P

p−→P ′′ −→ 0

where i is the projection and p is the projection. Then we may find a map α : P −→ A making the
following diagram commute:

0 −→ P ′
i−→ P

p−→ P −→ 0
↓ α′ ↓ α ↓ α′′

0 −→ A′
f−→ A

g−→ A′′ −→ 0

Then of course we can complete this to a diagram

0 0 0
↓ ↓ ↓

0 −→ R′
i−→ R

p−→ R′′ −→ 0
↓ ↓ ↓

0 −→ P ′
i−→ P

p−→ P ′′ −→ 0
↓ α′ ↓ α ↓ α′′

0 −→ A′
f−→ A

g−→ A′′ −→ 0
↓ ↓ ↓
0 0 0

5. Dualize this result: start with

0 −→ B′
h−→B

k−→B′′ −→ 0

and injective embeddings 0 −→ B′
β′−→ I ′ −→ Q′ −→ 0 and 0 −→ B′′

β′′−→ I ′′ −→ Q′′ −→ 0. State
and prove the corresponding result.

Solution. You must show that if I = I ′ ⊕ I ′′ then we can complete the following diagram.

0 0 0
↓ ↓ ↓

0 −→ B′
i−→ B

p−→ B′′ −→ 0
↓ β′ ↓ β ↓ β′′

0 −→ I ′
i−→ I

p−→ I ′′ −→ 0
↓ ↓ ↓

0 −→ Q′
f−→ Q

g−→ Q′′ −→ 0
↓ ↓ ↓
0 0 0
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The map β : B −→ I must be constructed. Using the injectivity of I ′, there exists a map β1 :
B −→ I ′ such that β1 ◦ i = β′. Also, let β2 : B −→ I ′′ be the composition β′′ ◦ p. Then we may
define β(b) = (β1(b), β2(b)) and it is easy to see that the diagram:

0 0 0
↓ ↓ ↓

0 −→ B′
i−→ B

p−→ B′′ −→ 0
↓ β′ ↓ β ↓ β′′

0 −→ I ′
i−→ I

p−→ I ′′ −→ 0
↓ ↓ ↓
0 0 0

commutes. We have induced maps I ′ −→ Q′ etc completing the picture, just as in the Snake lemma.
�

6. (Lambek) We sketched a proof of the following fact in class. Consider a commutative diagram
with exact rows:

A′
α1−→ A

α2−→ A′′

↓ f ′ Σ1 ↓ f Σ2 ↓ f ′′

B′
β1−→ B

β2−→ B′′

Define
coker(Σ1) = (im(f) ∩ im(β1))/ im(fα1),

ker(Σ2) = ker(β2f)/((ker(α2) + ker(f)).

Show coker(Σ1) ∼= ker(Σ2).

Solution. The image of ker(β2f) in B under the map f clearly is contained in both im(f) and
ker(β2) = im(β1). We can thus compose this map with the projection onto ker(Σ2):

ker(β2f)
f−→ im(f) ∩ im(β1)

p−→(im(f) ∩ im(β1))/ im(fα1) (2)

It is sufficient to show that this composition is surjective, and that its kernel is exactly ker(α2) +
ker(f).

Surjective: suppose that b ∈ im(f) ∩ im(β1). Then we may write b = f(a) = β1(b′) with a ∈ A
and b′ ∈ B′. Since β2f(a) = β2β1(b′) = 0 we have f ∈ ker(β2f). This proves that the composition
(2) is surjective.

Finally we must show that the kernel is ker(α2) + ker(f). It is clear that ker(f) is contained
in the kernel of (2), and if a ∈ ker(α2) = im(α1), then f(a) ∈ im(fα1). Thus ker(α2) is also
contained in the kernel of (2). On the other hand, suppose that a ∈ ker(β2f) is in the kernel of
(2). This means that f(a) ∈ im(fα1), so we may write f(a) = fα1(a′) for some a′ ∈ A′. Now write
a = a1 +a2 where a1 = α1(a′) and a2 = a−α1(a′). Then a1 ∈ im(α1) = ker(α2), while a2 ∈ ker(f).

We have proved that the composition (2) is surjective and its kernel is exactly ker(α2) + ker(f).
Therefore

(im(f) ∩ im(β1))/ im(fα1) ∼= ker(β2f)/((ker(α2) + ker(f)).�

7. Use Lambek’s Lemma to prove that Ext(Aα, B) and Ext(A,Bβ) are isomorphic.
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First Solution. Recall that 0 −→ R −→ P
α−→A −→ 0 is a projective resolution and 0 −→

B
β−→ I −→ Q −→ 0 is an injective embedding. Consider:

0 0 0
↓ ↓ ↓

0 −→ Hom(A,B) −→ Hom(A, I) −→ Hom(A,Q) −→ Ext(A,Bβ)
↓ ↓ Σ4 ↓ Σ5 ↓

0 −→ Hom(P,B) −→ Hom(P, I) −→ Hom(P,Q) −→ 0
↓ Σ2 ↓ Σ3 ↓

0 −→ Hom(R,B) −→ Hom(R, I) −→ Hom(R,Q)
↓ Σ1 ↓

Ext(Aα, B) −→ 0
↓
0

We claim that the rows and columns are exact. Mostly this follows from the left exactness of Hom
and the definitions of Ext(Aα, B) and Ext(A,Bβ) as the cokernel and kernel of the middle maps in
the first column and first row. The surjectivity of the two maps

Hom(P, I) −→ Hom(R, I), Hom(P, I) −→ Hom(P,Q)

follows from the injectivity of I and the projectivity of P .
Now with the notation introduced with Lambek’s Lemma,

ker(Σ1) ∼= coker(Σ2) ∼= ker(Σ3) ∼= coker(Σ4) ∼= ker(Σ5).

It is easy to check that the kernel of Σ1 is all of Hom(R,B) modulo the kernel of the map
Hom(R,B) −→ Ext(Aα, B), that is ker(Σ1) ∼= Ext(Aα, B) and similarly ker(Σ5) ∼= Ext(A,Bβ).
�

Second Solution This solution does not use Lambek’s Lemma. Consider the following commuta-
tive diagram with exact rows:

0 −→ Hom(A,B) −→ Hom(A, I) −→ Hom(A,Q)
↓ ↓ ↓

0 −→ Hom(P,B) −→ Hom(P, I) −→ Hom(P,Q) −→ 0
↓ ↓ ↓

0 −→ Hom(R,B) −→ Hom(R, I) −→ Hom(R,Q)
↓ ↓

Ext(Aα, B) −→ 0

The kernel of the map Hom(P,X) → Hom(R,X) is Hom(A,X), where X = B, I,Q, and the
cokernel of the map Hom(P,B)→ Hom(R,B) is Ext(Aα, B). So the Snake Lemma gives an exact
sequence:

0→ Hom(A,B)→ Hom(A, I)→ Hom(A,Q)→ Ext(Aα, B)→ 0.

But this is the definition of Ext(A,Bα), so

Ext(Aα, B) ∼= Ext(A,Bα).
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