Homework 4 Solutions

From Lang’s Algebra. You were asked to do Problems 9 and 14 in Chapter
3. I'll only partially do Problem 9.

Chapter 3, Problem 9. (a) Let A be a commutative ring and let M
be an A-module. Let S be a multiplicative subset of A. Define S~™*M in a
manner analogous to the one we used to define S~'A, and show that S—1M
is an S~ A-module.

(b) If 0 — M’ — M — M" — 0 is an exact sequence show that

0— S 'M — S 'M—S M —0

is exact.
Partial Solution. For (a), define S™'M to be pairs m/s with m € M
and s € S modulo the equivalence relation m/s = m’/s" if and only if

tsm —ts'm = 0 for some t € S. There are some things to check but they are
straightforward.

For (b), it is sufficient to show that if M’ L5 M —%5 M" is exact then so
1s

STIM' — ST'M — ST'M.

It is clear that the composition map S™'M’' — S™'M — S~tM" is zero,
so it is enough to show that if m/s € S™'M maps to zero in S™'M’ then
m/s = S7!f(x) for some x € S™'M’'. Indeed, since S~'g(m/s) = 0 there
exists some ¢t € S such that tg(m) = 0. Therefore tm € ker(g) = im(f), and
we can write tm = f(m') for some m’ € M. Now

STHf(m'[st) = f(m') /st = m/s
so we may take x = m//st.

We remark concerning Problem 9 that actually S~'M =~ S71A ® M and
so this problem says that S™'A is a flat A-module. See Proposition 3.2 on
page 13.



Chapter 16, Problem 14. From the snake Lemma, the following se-
quence is exact.

ker(f) — ker(g) — ker(h) — coker(f) — coker(g) — coker(h).

For (i), assuming f and h are monomorphisms (injective homomorphisms)
ker(f) = ker(h) = 0. If we have an exact sequence 0 — M — 0 then M = 0,
so ker(g) = 0, proving (i). Part (ii) is similar noting that f is surjective if
and only of coker(f) = 0. Finally for (iii), the assumption implies that we
have an exact sequence

0 — ker(f) — ker(g) — ker(h) — coker(f) — coker(g) — coker(h) — 0.
With this extra information we may now argue similarly to (i) and (ii).

Chapter 16, Problem 4. Let ¢ : A — B be a commutative ring
homomorphism. Let E be an A-module and F' a B-module. Let F4 be the
A-module obtained from F' via the operation of A on F through ¢, that is
for y € Fy and a € A this operation is given by

(a,y) = p(a)y.
Show that there is a natural isomorphism
Hompg(B ®4 E, F) = Homy(E, Fa). (1)

Remark. Extension and restriction of scalars are functors between the
categories of A-modules and B-modules.

A-modules — B-modules
E — B®aFE (extension)
Fy «— F (restriction)

The isomorphism (1) is analogous to the relationship between two adjoint
operators between Hilbert spaces. Thus if H, H' are Hilbert spaces and
T : H — H'is an operator we have

(Tv,v") = (v, T*").

In view of this analogy we say that extension and restriction of scalars are
adjoint functors.



Solution. Let o : E — F4 be an A-module homomorphism. The map
(b, z) — ba(x) from Bx E — F'is A-bilinear so it induces a homomorphism
of A-modules 5 : B®4 E — F such that 5(b ® z) = ba(x). But this map
is actually B-linear if we remember how B ®4 E is made into a B-module
(Lang, p. 623). Indeed,

B(b - (b®z)) = B(bib®x) = biba(x) = by - B(b® z).

Since B ® 4 F is generated by elements of the form b ® x, this confirms that
[ is a B-module homomorphism. Now the map « — [ gives us a map

Homy(F, F4) — Hompg(B ®4 E, F). (2)

To construct a map in the other direction, observe that j : E — B ®4 F
defined by j(z) = 1 ® z is an A-module homomorphism. Composition with
7 gives us a map

Homp(B ®a4 E, F) — Homyu(E, Fa). (3)

That is, given 8 € Hompg(B ®4 E, F) define « € Homu(F, F4) to be the
composition o j.

We must show that these two constructions are inverses of each other.
Thus suppose we start with 5 € Hompg(B ®4 E, F'), then define « = o j.
We must show that [ is recovered from a by the map (2). It is sufficient to
show that S(b® z) = ba(x) since B ®4 E is generated as an A-module by
elements of the form b ® z. Indeed since 3 is B-linear we have

Blb® ) = B(b- (1©)) = bB(1®z) = bFj(x) = ba(z).
This proves that the composition
Homp(B ®4 E, F) — Homu(E, F4) — Homp(B ®4 E, F)
is the identity map. As for the composition
Homy(F, Fy) — Homp(B ®4 E, F) — Homa(FE, Fx)
if we start with o € Homyu(F, Fa) and define 5 by (b ® x) = ba(z) then
Boj()=Blez)=1-alz),

so this composition is also the identity.
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Chapter 16, Problem 6. If M, N are flat so is M ® N.

Solution: If 0 — T" — U is exact consider the diagram:

0 — (MeN)®T — (MeN®U)

lg ig

0 — Me(N®T) — Mo (NeU)

We are using the naturality of the isomorphism (M @ N)oT — MQ(NRT).
Since N is flat N ® T' — N ® U is injective, and then since M is flat, the
bottom row is exact. Hence the top row is exact proving that M ® N is flat.

Chapter 16, Problem 7. Let F' be a flat R-module and let a € R be
an element that is not a zero divisor. If az = 0 for some z € R then z = 0.

Solution.
Lemma 1. We have a natural isomorphism R & M = M.

Note that this is a special case of Proposition 2.7 on page 612. It is a
basic property of the tensor product and probably deserves more prominence
in the book!

Proof. The multiplication map R x M — M is bilinear, so there is a ho-
momorphism R ® M — M such that »r ® m —— rm. On the other hand,
m — 1 ®m is a homomorphism M — R ® M. It is easy to see that these
maps are inverses of each other. Naturality means that if f: M — N is a
homomorphism the diagram

R®M — M

l |

RN — N

commutes, and this is easy to check. O

Now consider the map f : R — R defined by f(x) = ax. Since R is
commutative this is a homomorphism, and since a is not a zero divisor, it is
injective. Tensoring with F' and using the Lemma, the map F' — F' which
is multiplication by a is injective.



Chapter 16, Problem 8. (i) If S is a multiplicative subset of the
commutative ring R. Then S™!'R is flat over R.

(ii) M is flat over R if and only if M, is flat over R, for every prime ideal
p of R.

(iii) If R is a principal ideal domain, then the module F is flat if and only
if it is torsion-free.

Solutions:
Lemma 2. The S™'R module S™'M is isomorphic to ST'R ®@r M.

Proof. We have a homomorphism S™'M — S7'R ®r M that satisfies
m/s + 1/s @ m, and an inverse homomorphism S™'R ®p M — S™'M
that satisfies a/s @ m +— am/s. We leave the reader to check that these are
inverse isomorphisms. O

Now we recognize the flatness of S™'R as being equivalent to Chapter 3
Problem 9b, solved above. This proves (i).

Lemma 3. Suppose that M is an R-module and N is an S~ R-module. Then
ST'M ®s-1g N = M ®p N.
Proof. We make use of the isomorphism
STIM®@g-1g N2 (ST'TRRr M) ®s-15 N

where in the second tensor product it is understood that the S~—!R-module
structure on ST'R®xr M comes from the action of S™'R on S~'R. Using the
commutativity and associativity of the tensor product this is isomorphic to

(M ®r ST'R) ®g-15g N =2 M @5 (ST'R®g-15 N).
Now we may use Lemma 1. O

Lemma 4. Suppose that N is a flat ST*R-module. Then it is flat as an
R-module.

Proof. Suppose that M — M’ is an injective homomorphism of R-modules.
Then S~'M — S~'M’ is injective by Chapter 3 Problem 9, solved above.
Now since N is flat as an R-module, the map

S—IM ®Rg-1g N — S’ ®g-1g N

is injective. But by Lemma 3, this may be interpreted as the natural map
M @r N — M’ ®@r N. So N is flat as an R-module. O
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The following fact is part of Problem 10 in Chapter 3. (It was not as-
signed, but I'll prove it.)

Lemma 5. Let M be an R-module. Then M = 0 if and only if M, = 0 for
all maximal ideals p of M.

Proof. Suppose that a is a nonzero element of M. Let a = {z € R|ax = 0}.
Then a is a proper ideal since 1 ¢ a so a is contained in a maximal ideal p.
We claim that M, # 0. Indeed, if /1 € M, is zero, then by definition of the
localization M, we must have sz = 0 for some s € S = R —p. But thisis a
contradiction since s ¢ a. O

Now we can do (ii). If M is flat then since M, = ST'R®M with S = R—p,
M, is a tensor product of two flat R-modules, hence flat.

Conversely, suppose that M, is flat over R, for all p. Then it is flat as an
R-module by Lemma 4. Suppose that

A— B
is an injective homomorphism of R-modules. We want to show that
M®@rA— M Qg B
is injective. If not, let K be the kernel, so the following is exact:
00— K —M®rA— M®pB.

By Lemma 5, if K # 0 there exists a p such that K, # 0. Now by the
exactness of localization (with S = R — p)

0— K, — S ' (M®rA) — S HM®pg B)
is exact and so S™H(M ® A) — S™H(M ® B) is not injective. But
ST MerA)2ST'TROr Mg A2 M, ® A

and so M, ®pr A — M, ®p B is not injective. But M, is flat as an R-module
by Lemma 4. This is a contradiction.
(iii) Use Proposition 3.7 on page 618.



