Homework 4 Solutions

From Lang's Algebra. You were asked to do Problems 9 and 14 in Chapter 3. I'll only partially do Problem 9.

Chapter 3, Problem 9. (a) Let A be a commutative ring and let M be an A-module. Let S be a multiplicative subset of A. Define $S^{-1} M$ in a manner analogous to the one we used to define $S^{-1} A$, and show that $S^{-1} M$ is an $S^{-1} A$-module.
(b) If $0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0$ is an exact sequence show that

$$
0 \longrightarrow S^{-1} M^{\prime} \longrightarrow S^{-1} M \longrightarrow S^{-1} M^{\prime \prime} \longrightarrow 0
$$

is exact.
Partial Solution. For (a), define $S^{-1} M$ to be pairs m / s with $m \in M$ and $s \in S$ modulo the equivalence relation $m / s=m^{\prime} / s^{\prime}$ if and only if $t s m-t s^{\prime} m=0$ for some $t \in S$. There are some things to check but they are straightforward.

For (b), it is sufficient to show that if $M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime}$ is exact then so is

$$
S^{-1} M^{\prime} \longrightarrow S^{-1} M \longrightarrow S^{-1} M^{\prime \prime}
$$

It is clear that the composition map $S^{-1} M^{\prime} \longrightarrow S^{-1} M \longrightarrow S^{-1} M^{\prime \prime}$ is zero, so it is enough to show that if $m / s \in S^{-1} M$ maps to zero in $S^{-1} M^{\prime}$ then $m / s=S^{-1} f(x)$ for some $x \in S^{-1} M^{\prime}$. Indeed, since $S^{-1} g(m / s)=0$ there exists some $t \in S$ such that $\operatorname{tg}(m)=0$. Therefore $\operatorname{tm} \in \operatorname{ker}(g)=\operatorname{im}(f)$, and we can write $t m=f\left(m^{\prime}\right)$ for some $m^{\prime} \in M$. Now

$$
S^{-1} f\left(m^{\prime} / s t\right)=f\left(m^{\prime}\right) / s t=m / s
$$

so we may take $x=m^{\prime} / s t$.
We remark concerning Problem 9 that actually $S^{-1} M \cong S^{-1} A \otimes M$ and so this problem says that $S^{-1} A$ is a flat A-module. See Proposition 3.2 on page 13.

Chapter 16, Problem 14. From the snake Lemma, the following sequence is exact.

$$
\operatorname{ker}(f) \longrightarrow \operatorname{ker}(g) \longrightarrow \operatorname{ker}(h) \longrightarrow \operatorname{coker}(f) \longrightarrow \operatorname{coker}(g) \longrightarrow \operatorname{coker}(h)
$$

For (i), assuming f and h are monomorphisms (injective homomorphisms) $\operatorname{ker}(f)=\operatorname{ker}(h)=0$. If we have an exact sequence $0 \rightarrow M \rightarrow 0$ then $M=0$, so $\operatorname{ker}(g)=0$, proving (i). Part (ii) is similar noting that f is surjective if and only of $\operatorname{coker}(f)=0$. Finally for (iii), the assumption implies that we have an exact sequence
$0 \rightarrow \operatorname{ker}(f) \longrightarrow \operatorname{ker}(g) \longrightarrow \operatorname{ker}(h) \longrightarrow \operatorname{coker}(f) \longrightarrow \operatorname{coker}(g) \longrightarrow \operatorname{coker}(h) \rightarrow 0$.
With this extra information we may now argue similarly to (i) and (ii).
Chapter 16, Problem 4. Let $\varphi: A \rightarrow B$ be a commutative ring homomorphism. Let E be an A-module and F a B-module. Let F_{A} be the A-module obtained from F via the operation of A on F through φ, that is for $y \in F_{A}$ and $a \in A$ this operation is given by

$$
(a, y) \mapsto \varphi(a) y
$$

Show that there is a natural isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{B}\left(B \otimes_{A} E, F\right) \cong \operatorname{Hom}_{A}\left(E, F_{A}\right) \tag{1}
\end{equation*}
$$

Remark. Extension and restriction of scalars are functors between the categories of A-modules and B-modules.

$$
\begin{array}{lll}
\text { A-modules } & \longrightarrow \text { B-modules } & \\
E & \longmapsto B \otimes_{A} E & \text { (extension) } \\
F_{A} & \longleftrightarrow F & \text { (restriction) }
\end{array}
$$

The isomorphism (1) is analogous to the relationship between two adjoint operators between Hilbert spaces. Thus if $\boldsymbol{H}, \boldsymbol{H}^{\prime}$ are Hilbert spaces and $T: \boldsymbol{H} \longrightarrow \boldsymbol{H}^{\prime}$ is an operator we have

$$
\left\langle T v, v^{\prime}\right\rangle=\left\langle v, T^{*} v^{\prime}\right\rangle
$$

In view of this analogy we say that extension and restriction of scalars are adjoint functors.

Solution. Let $\alpha: E \longrightarrow F_{A}$ be an A-module homomorphism. The map $(b, x) \mapsto b \alpha(x)$ from $B \times E \longrightarrow F$ is A-bilinear so it induces a homomorphism of A-modules $\beta: B \otimes_{A} E \longrightarrow F$ such that $\beta(b \otimes x)=b \alpha(x)$. But this map is actually B-linear if we remember how $B \otimes_{A} E$ is made into a B-module (Lang, p. 623). Indeed,

$$
\beta\left(b_{1} \cdot(b \otimes x)\right)=\beta\left(b_{1} b \otimes x\right)=b_{1} b \alpha(x)=b_{1} \cdot \beta(b \otimes x)
$$

Since $B \otimes_{A} E$ is generated by elements of the form $b \otimes x$, this confirms that β is a B-module homomorphism. Now the map $\alpha \mapsto \beta$ gives us a map

$$
\begin{equation*}
\operatorname{Hom}_{A}\left(E, F_{A}\right) \longrightarrow \operatorname{Hom}_{B}\left(B \otimes_{A} E, F\right) \tag{2}
\end{equation*}
$$

To construct a map in the other direction, observe that $j: E \longrightarrow B \otimes_{A} E$ defined by $j(x)=1 \otimes x$ is an A-module homomorphism. Composition with j gives us a map

$$
\begin{equation*}
\operatorname{Hom}_{B}\left(B \otimes_{A} E, F\right) \longrightarrow \operatorname{Hom}_{A}\left(E, F_{A}\right) \tag{3}
\end{equation*}
$$

That is, given $\beta \in \operatorname{Hom}_{B}\left(B \otimes_{A} E, F\right)$ define $\alpha \in \operatorname{Hom}_{A}\left(E, F_{A}\right)$ to be the composition $\beta \circ j$.

We must show that these two constructions are inverses of each other. Thus suppose we start with $\beta \in \operatorname{Hom}_{B}\left(B \otimes_{A} E, F\right)$, then define $\alpha=\beta \circ j$. We must show that β is recovered from α by the map (2). It is sufficient to show that $\beta(b \otimes x)=b \alpha(x)$ since $B \otimes_{A} E$ is generated as an A-module by elements of the form $b \otimes x$. Indeed since β is B-linear we have

$$
\beta(b \otimes x)=\beta(b \cdot(1 \otimes x))=b \beta(1 \otimes x)=b \beta j(x)=b \alpha(x) .
$$

This proves that the composition

$$
\operatorname{Hom}_{B}\left(B \otimes_{A} E, F\right) \longrightarrow \operatorname{Hom}_{A}\left(E, F_{A}\right) \longrightarrow \operatorname{Hom}_{B}\left(B \otimes_{A} E, F\right)
$$

is the identity map. As for the composition

$$
\operatorname{Hom}_{A}\left(E, F_{A}\right) \longrightarrow \operatorname{Hom}_{B}\left(B \otimes_{A} E, F\right) \longrightarrow \operatorname{Hom}_{A}\left(E, F_{A}\right)
$$

if we start with $\alpha \in \operatorname{Hom}_{A}\left(E, F_{A}\right)$ and define β by $\beta(b \otimes x)=b \alpha(x)$ then

$$
\beta \circ j(x)=\beta(1 \otimes x)=1 \cdot \alpha(x)
$$

so this composition is also the identity.

Chapter 16, Problem 6. If M, N are flat so is $M \otimes N$.
Solution: If $0 \longrightarrow T \longrightarrow U$ is exact consider the diagram:

We are using the naturality of the isomorphism $(M \otimes N) \circ T \longrightarrow M \otimes(N \otimes T)$. Since N is flat $N \otimes T \longrightarrow N \otimes U$ is injective, and then since M is flat, the bottom row is exact. Hence the top row is exact proving that $M \otimes N$ is flat.

Chapter 16, Problem 7. Let F be a flat R-module and let $a \in R$ be an element that is not a zero divisor. If $a x=0$ for some $x \in R$ then $x=0$.

Solution.

Lemma 1. We have a natural isomorphism $R \otimes M \cong M$.
Note that this is a special case of Proposition 2.7 on page 612. It is a basic property of the tensor product and probably deserves more prominence in the book!

Proof. The multiplication map $R \times M \longrightarrow M$ is bilinear, so there is a homomorphism $R \otimes M \longrightarrow M$ such that $r \otimes m \longmapsto r m$. On the other hand, $m \mapsto 1 \otimes m$ is a homomorphism $M \longrightarrow R \otimes M$. It is easy to see that these maps are inverses of each other. Naturality means that if $f: M \longrightarrow N$ is a homomorphism the diagram

commutes, and this is easy to check.
Now consider the map $f: R \longrightarrow R$ defined by $f(x)=a x$. Since R is commutative this is a homomorphism, and since a is not a zero divisor, it is injective. Tensoring with F and using the Lemma, the map $F \longrightarrow F$ which is multiplication by a is injective.

Chapter 16, Problem 8. (i) If S is a multiplicative subset of the commutative ring R. Then $S^{-1} R$ is flat over R.
(ii) M is flat over R if and only if $M_{\mathfrak{p}}$ is flat over $R_{\mathfrak{p}}$ for every prime ideal \mathfrak{p} of R.
(iii) If R is a principal ideal domain, then the module F is flat if and only if it is torsion-free.

Solutions:

Lemma 2. The $S^{-1} R$ module $S^{-1} M$ is isomorphic to $S^{-1} R \otimes_{R} M$.
Proof. We have a homomorphism $S^{-1} M \longrightarrow S^{-1} R \otimes_{R} M$ that satisfies $m / s \mapsto 1 / s \otimes m$, and an inverse homomorphism $S^{-1} R \otimes_{R} M \longrightarrow S^{-1} M$ that satisfies $a / s \otimes m \mapsto a m / s$. We leave the reader to check that these are inverse isomorphisms.

Now we recognize the flatness of $S^{-1} R$ as being equivalent to Chapter 3 Problem 9b, solved above. This proves (i).
Lemma 3. Suppose that M is an R-module and N is an $S^{-1} R$-module. Then

$$
S^{-1} M \otimes_{S^{-1} R} N \cong M \otimes_{R} N
$$

Proof. We make use of the isomorphism

$$
S^{-1} M \otimes_{S^{-1} R} N \cong\left(S^{-1} R \otimes_{R} M\right) \otimes_{S^{-1} R} N
$$

where in the second tensor product it is understood that the $S^{-1} R$-module structure on $S^{-1} R \otimes_{R} M$ comes from the action of $S^{-1} R$ on $S^{-1} R$. Using the commutativity and associativity of the tensor product this is isomorphic to

$$
\left(M \otimes_{R} S^{-1} R\right) \otimes_{S^{-1} R} N \cong M \otimes_{R}\left(S^{-1} R \otimes_{S^{-1} R} N\right)
$$

Now we may use Lemma 1.
Lemma 4. Suppose that N is a flat $S^{-1} R$-module. Then it is flat as an R-module.

Proof. Suppose that $M \longrightarrow M^{\prime}$ is an injective homomorphism of R-modules. Then $S^{-1} M \longrightarrow S^{-1} M^{\prime}$ is injective by Chapter 3 Problem 9 , solved above. Now since N is flat as an R-module, the map

$$
S^{-1} M \otimes_{S^{-1} R} N \longrightarrow S^{-1} M^{\prime} \otimes_{S^{-1} R} N
$$

is injective. But by Lemma 3, this may be interpreted as the natural map $M \otimes_{R} N \longrightarrow M^{\prime} \otimes_{R} N$. So N is flat as an R-module.

The following fact is part of Problem 10 in Chapter 3. (It was not assigned, but I'll prove it.)

Lemma 5. Let M be an R-module. Then $M=0$ if and only if $M_{\mathfrak{p}}=0$ for all maximal ideals \mathfrak{p} of M.

Proof. Suppose that a is a nonzero element of M. Let $\mathfrak{a}=\{x \in R \mid a x=0\}$. Then \mathfrak{a} is a proper ideal since $1 \notin \mathfrak{a}$ so \mathfrak{a} is contained in a maximal ideal \mathfrak{p}. We claim that $M_{\mathfrak{p}} \neq 0$. Indeed, if $x / 1 \in M_{\mathfrak{p}}$ is zero, then by definition of the localization $M_{\mathfrak{p}}$ we must have $s x=0$ for some $s \in S=R-\mathfrak{p}$. But this is a contradiction since $s \notin \mathfrak{a}$.

Now we can do (ii). If M is flat then since $M_{\mathfrak{p}}=S^{-1} R \otimes M$ with $S=R-\mathfrak{p}$, $M_{\mathfrak{p}}$ is a tensor product of two flat R-modules, hence flat.

Conversely, suppose that $M_{\mathfrak{p}}$ is flat over $R_{\mathfrak{p}}$ for all \mathfrak{p}. Then it is flat as an R-module by Lemma 4. Suppose that

$$
A \longrightarrow B
$$

is an injective homomorphism of R-modules. We want to show that

$$
M \otimes_{R} A \longrightarrow M \otimes_{R} B
$$

is injective. If not, let K be the kernel, so the following is exact:

$$
0 \longrightarrow K \longrightarrow M \otimes_{R} A \longrightarrow M \otimes_{R} B
$$

By Lemma 5, if $K \neq 0$ there exists a \mathfrak{p} such that $K_{\mathfrak{p}} \neq 0$. Now by the exactness of localization (with $S=R-\mathfrak{p}$)

$$
0 \longrightarrow K_{\mathfrak{p}} \longrightarrow S^{-1}\left(M \otimes_{R} A\right) \longrightarrow S^{-1}\left(M \otimes_{R} B\right)
$$

is exact and so $S^{-1}(M \otimes A) \longrightarrow S^{-1}(M \otimes B)$ is not injective. But

$$
S^{-1}\left(M \otimes_{R} A\right) \cong S^{-1} R \otimes_{R} M \otimes_{R} A \cong M_{\mathfrak{p}} \otimes A
$$

and so $M_{\mathfrak{p}} \otimes_{R} A \longrightarrow M_{\mathfrak{p}} \otimes_{R} B$ is not injective. But $M_{\mathfrak{p}}$ is flat as an R-module by Lemma 4 . This is a contradiction.
(iii) Use Proposition 3.7 on page 618.

