
Homework 4 Solutions

From Lang’s Algebra. You were asked to do Problems 9 and 14 in Chapter
3. I’ll only partially do Problem 9.

Chapter 3, Problem 9. (a) Let A be a commutative ring and let M
be an A-module. Let S be a multiplicative subset of A. Define S−1M in a
manner analogous to the one we used to define S−1A, and show that S−1M
is an S−1A-module.

(b) If 0 −→M ′ −→M −→M ′′ −→ 0 is an exact sequence show that

0 −→ S−1M ′ −→ S−1M −→ S−1M ′′ −→ 0

is exact.

Partial Solution. For (a), define S−1M to be pairs m/s with m ∈ M
and s ∈ S modulo the equivalence relation m/s = m′/s′ if and only if
tsm− ts′m = 0 for some t ∈ S. There are some things to check but they are
straightforward.

For (b), it is sufficient to show that if M ′ f−→M
g−→M ′′ is exact then so

is
S−1M ′ −→ S−1M −→ S−1M ′′.

It is clear that the composition map S−1M ′ −→ S−1M −→ S−1M ′′ is zero,
so it is enough to show that if m/s ∈ S−1M maps to zero in S−1M ′ then
m/s = S−1f(x) for some x ∈ S−1M ′. Indeed, since S−1g(m/s) = 0 there
exists some t ∈ S such that tg(m) = 0. Therefore tm ∈ ker(g) = im(f), and
we can write tm = f(m′) for some m′ ∈M . Now

S−1f(m′/st) = f(m′)/st = m/s

so we may take x = m′/st.

We remark concerning Problem 9 that actually S−1M ∼= S−1A⊗M and
so this problem says that S−1A is a flat A-module. See Proposition 3.2 on
page 13.
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Chapter 16, Problem 14. From the snake Lemma, the following se-
quence is exact.

ker(f) −→ ker(g) −→ ker(h) −→ coker(f) −→ coker(g) −→ coker(h).

For (i), assuming f and h are monomorphisms (injective homomorphisms)
ker(f) = ker(h) = 0. If we have an exact sequence 0→M → 0 then M = 0,
so ker(g) = 0, proving (i). Part (ii) is similar noting that f is surjective if
and only of coker(f) = 0. Finally for (iii), the assumption implies that we
have an exact sequence

0→ ker(f) −→ ker(g) −→ ker(h) −→ coker(f) −→ coker(g) −→ coker(h)→ 0.

With this extra information we may now argue similarly to (i) and (ii).

Chapter 16, Problem 4. Let ϕ : A → B be a commutative ring
homomorphism. Let E be an A-module and F a B-module. Let FA be the
A-module obtained from F via the operation of A on F through ϕ, that is
for y ∈ FA and a ∈ A this operation is given by

(a, y) 7→ ϕ(a)y.

Show that there is a natural isomorphism

HomB(B ⊗A E,F ) ∼= HomA(E,FA). (1)

Remark. Extension and restriction of scalars are functors between the
categories of A-modules and B-modules.

A-modules −→ B-modules
E 7−→ B ⊗A E (extension)
FA

7−→ F (restriction)

The isomorphism (1) is analogous to the relationship between two adjoint
operators between Hilbert spaces. Thus if H ,H ′ are Hilbert spaces and
T : H −→H ′ is an operator we have

〈Tv, v′〉 = 〈v, T ∗v′〉.

In view of this analogy we say that extension and restriction of scalars are
adjoint functors .
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Solution. Let α : E −→ FA be an A-module homomorphism. The map
(b, x) 7→ bα(x) from B×E −→ F is A-bilinear so it induces a homomorphism
of A-modules β : B ⊗A E −→ F such that β(b ⊗ x) = bα(x). But this map
is actually B-linear if we remember how B ⊗A E is made into a B-module
(Lang, p. 623). Indeed,

β(b1 · (b⊗ x)) = β(b1b⊗ x) = b1bα(x) = b1 · β(b⊗ x).

Since B ⊗A E is generated by elements of the form b⊗ x, this confirms that
β is a B-module homomorphism. Now the map α 7→ β gives us a map

HomA(E,FA) −→ HomB(B ⊗A E,F ). (2)

To construct a map in the other direction, observe that j : E −→ B ⊗A E
defined by j(x) = 1 ⊗ x is an A-module homomorphism. Composition with
j gives us a map

HomB(B ⊗A E,F ) −→ HomA(E,FA). (3)

That is, given β ∈ HomB(B ⊗A E,F ) define α ∈ HomA(E,FA) to be the
composition β ◦ j.

We must show that these two constructions are inverses of each other.
Thus suppose we start with β ∈ HomB(B ⊗A E,F ), then define α = β ◦ j.
We must show that β is recovered from α by the map (2). It is sufficient to
show that β(b ⊗ x) = bα(x) since B ⊗A E is generated as an A-module by
elements of the form b⊗ x. Indeed since β is B-linear we have

β(b⊗ x) = β(b · (1⊗ x)) = b β(1⊗ x) = bβj(x) = bα(x).

This proves that the composition

HomB(B ⊗A E,F ) −→ HomA(E,FA) −→ HomB(B ⊗A E,F )

is the identity map. As for the composition

HomA(E,FA) −→ HomB(B ⊗A E,F ) −→ HomA(E,FA)

if we start with α ∈ HomA(E,FA) and define β by β(b⊗ x) = bα(x) then

β ◦ j(x) = β(1⊗ x) = 1 · α(x),

so this composition is also the identity.
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Chapter 16, Problem 6. If M,N are flat so is M ⊗N .

Solution: If 0 −→ T −→ U is exact consider the diagram:

0 −→ (M ⊗N)⊗ T −→ (M ⊗N ⊗ U)−→ ∼=

−→ ∼=
0 −→ M ⊗ (N ⊗ T ) −→ M ⊗ (N ⊗ U)

We are using the naturality of the isomorphism (M⊗N)◦T −→M⊗(N⊗T ).
Since N is flat N ⊗ T −→ N ⊗ U is injective, and then since M is flat, the
bottom row is exact. Hence the top row is exact proving that M ⊗N is flat.

Chapter 16, Problem 7. Let F be a flat R-module and let a ∈ R be
an element that is not a zero divisor. If ax = 0 for some x ∈ R then x = 0.

Solution.

Lemma 1. We have a natural isomorphism R⊗M ∼= M .

Note that this is a special case of Proposition 2.7 on page 612. It is a
basic property of the tensor product and probably deserves more prominence
in the book!

Proof. The multiplication map R ×M −→ M is bilinear, so there is a ho-
momorphism R ⊗M −→ M such that r ⊗m 7−→ rm. On the other hand,
m 7→ 1⊗m is a homomorphism M −→ R ⊗M . It is easy to see that these
maps are inverses of each other. Naturality means that if f : M −→ N is a
homomorphism the diagram

R⊗M −→ M−→ −→

R⊗N −→ N

commutes, and this is easy to check.

Now consider the map f : R −→ R defined by f(x) = ax. Since R is
commutative this is a homomorphism, and since a is not a zero divisor, it is
injective. Tensoring with F and using the Lemma, the map F −→ F which
is multiplication by a is injective.
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Chapter 16, Problem 8. (i) If S is a multiplicative subset of the
commutative ring R. Then S−1R is flat over R.

(ii) M is flat over R if and only if Mp is flat over Rp for every prime ideal
p of R.

(iii) If R is a principal ideal domain, then the module F is flat if and only
if it is torsion-free.

Solutions:

Lemma 2. The S−1R module S−1M is isomorphic to S−1R⊗R M .

Proof. We have a homomorphism S−1M −→ S−1R ⊗R M that satisfies
m/s 7→ 1/s ⊗ m, and an inverse homomorphism S−1R ⊗R M −→ S−1M
that satisfies a/s⊗m 7→ am/s. We leave the reader to check that these are
inverse isomorphisms.

Now we recognize the flatness of S−1R as being equivalent to Chapter 3
Problem 9b, solved above. This proves (i).

Lemma 3. Suppose that M is an R-module and N is an S−1R-module. Then

S−1M ⊗S−1R N ∼= M ⊗R N.

Proof. We make use of the isomorphism

S−1M ⊗S−1R N ∼= (S−1R⊗R M)⊗S−1R N

where in the second tensor product it is understood that the S−1R-module
structure on S−1R⊗RM comes from the action of S−1R on S−1R. Using the
commutativity and associativity of the tensor product this is isomorphic to

(M ⊗R S
−1R)⊗S−1R N ∼= M ⊗R (S−1R⊗S−1R N).

Now we may use Lemma 1.

Lemma 4. Suppose that N is a flat S−1R-module. Then it is flat as an
R-module.

Proof. Suppose that M −→M ′ is an injective homomorphism of R-modules.
Then S−1M −→ S−1M ′ is injective by Chapter 3 Problem 9, solved above.
Now since N is flat as an R-module, the map

S−1M ⊗S−1R N −→ S−1M ′ ⊗S−1R N

is injective. But by Lemma 3, this may be interpreted as the natural map
M ⊗R N −→M ′ ⊗R N . So N is flat as an R-module.
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The following fact is part of Problem 10 in Chapter 3. (It was not as-
signed, but I’ll prove it.)

Lemma 5. Let M be an R-module. Then M = 0 if and only if Mp = 0 for
all maximal ideals p of M .

Proof. Suppose that a is a nonzero element of M . Let a = {x ∈ R|ax = 0}.
Then a is a proper ideal since 1 /∈ a so a is contained in a maximal ideal p.
We claim that Mp 6= 0. Indeed, if x/1 ∈Mp is zero, then by definition of the
localization Mp we must have sx = 0 for some s ∈ S = R − p. But this is a
contradiction since s /∈ a.

Now we can do (ii). IfM is flat then sinceMp = S−1R⊗M with S = R−p,
Mp is a tensor product of two flat R-modules, hence flat.

Conversely, suppose that Mp is flat over Rp for all p. Then it is flat as an
R-module by Lemma 4. Suppose that

A −→ B

is an injective homomorphism of R-modules. We want to show that

M ⊗R A −→M ⊗R B

is injective. If not, let K be the kernel, so the following is exact:

0 −→ K −→M ⊗R A −→M ⊗R B.

By Lemma 5, if K 6= 0 there exists a p such that Kp 6= 0. Now by the
exactness of localization (with S = R− p)

0 −→ Kp −→ S−1(M ⊗R A) −→ S−1(M ⊗R B)

is exact and so S−1(M ⊗ A) −→ S−1(M ⊗B) is not injective. But

S−1(M ⊗R A) ∼= S−1R⊗R M ⊗R A ∼= Mp ⊗ A

and so Mp⊗RA −→Mp⊗RB is not injective. But Mp is flat as an R-module
by Lemma 4. This is a contradiction.

(iii) Use Proposition 3.7 on page 618.
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