
Homework 3 Solutions

October 18, 2016

1. Let V be a finite-dimensional vector space over a field F . A linear
transformation T ∈ End(V ) is called semisimple if whenever W is an T -
invariant subspace (that is T (W ) ⊆ W ) there exists a complementary T -
invariant subspace W ′. Here complementary means that V = W ⊕W ′.

(a) If f is an irreducible polynomial in F [x], let V (f) be the subspace
killed by a power of f(T ). Prove that V is the direct sum of the V (f) as
f runs over the irreducibles. Explain what this result has to do with the
structure theory of finitely generated modules over a PID.

Remark: if F is algebraically closed, the irreducibles all have the form
f(x) = x−λ with λ ∈ F , and the V (f) are called the generalized eigenspaces .

(b) Prove that T is semisimple if and only if its minimal polynomial mT

has no repeated irreducible factor.
(c) Let n = dim(V ). Prove that TN = 0 for some N > 1 if and only if

T n = 0. In this case T is nilpotent . Prove that with respect to some basis
v1, · · · , vn the matrix of T is upper triangular, and indeed Tvi = vi−1 or
Tvi = 0.

(d) (Jordan canonical form) If λ ∈ F the k × k Jordan block is the
matrix

Jk(λ) =


λ 1

λ 1
. . . . . .

λ 1
λ

 .

Use (c) to show that over an algebraically closed field T may be written as
a direct sum of Jordan blocks.

(e) (Jordan decomposition.) The linear transformation T is unipotent
if T−IV is nilpotent. Assume that F is algebraically closed. Show that T may
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be written uniquely as TsTu where Ts and Tu commute, with Ts semisimple
and Tuwe assume that unipotent.

Solution: (a) We make V into a module over the polynomial ring F [X]
by letting f ∈ F [X] act on vectors via T :

f · v = f(T )v, v ∈ V.

This is a torsion module, since V is finite dimensional. It is obviously finitely
generated. Therefore we may invoke Theorem 7.5 on page 149 of Lang. It
gives a decomposition

V =
⊕

f∈F [V ] irreducible

V (f), V (f) = {v ∈ V |fN(T )v = 0, N large}.

(See the definition of E(p) on page 149 of Lang.) This is exactly (a).
To prove (b) it will be useful to have the following simple but important

fact, which is proved later in Lang’s Algebra. Let R be a ring, and let M
be an R-module. Then M is called simple if it is nonzero but has no proper
nontrivial submodules. If R is a PID then it follows from the structure theory
that every simple module is of the form R/(f) where f is irreducible.

Proposition 1 Let M be a module over a ring R. The following are equiv-
alent.

(1) If N is a submodule of M then there exists a submodule N ′ such that
M = N ⊕N ′.

(2) M is a direct sum of simple modules.

A module with either of these equivalent properties is called semisimple.
Condition (1) is sometimes called complete reducibility .
Proof See Section 17.2 on page 645 of Lang for a prowe assume thatof of
this equivalence. 2

Making V into an F [X]-module as above, from criterion (1), V is semisim-
ple as a module if and only if T is semisimple as an endomorphism. As before,
we use Theorem 7.5 on page 149, write

V =
⊕

fi∈F [V ] irreducible

V (fi), V (fi) ∼=
⊕
j

R/f
Nij

i ).
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The power of fi that appears in the minimal polynomial is maxj(Nij), so no
fi appears with multiplcity greater than one if and only if all Nij = 1 and
this is also the condition for semisimplicity in condition (2).

[The next two exercises are from the end of Lang, Chapter 2, page 115.]

2. Let p be a prime of the commutative ring A. Let S = A− p. Observe
that S is a multiplicative set and consider Ap = S−1A. Show that Ap has a
unique maximal ideal.

Solution. First we remind the reader about local rings. A ring is local
if it has a unique maximal ideal.

Lemma 1 If R is a commutative ring and m is an ideal, then a necessary
and sufficient condition for m to be the unique maximal ideal of R is R−m
consists of the set of all units of R.

Proof An element ε ∈ R is a nonunit if and only if Rε is a proper ideal,
that is, if and only if ε is contained in a maximal ideal. So if R−m consists
of units, then every maximal ideal of R must be contained in m, implying
that m is the unique maximal ideal. The converse is similar. 2

Consider pAp = {p/s|p ∈ p, s ∈ S}. This is an ideal, with the property
that its complement consists of units; indeed, if a/s ∈ Ap is not in pAp then
a /∈ p, so a ∈ S and therefore its inverse s/a is in Ap. We see that Ap − pAp

consists of units, and the statement follows from the Lemma.

3. Show that if A is a principal ideal domain and S is a multiplicative
set then S−1A is a principal ideal domain.

Solution. We identify S−1A with a subring of the field of fractions of
A. Let A be an ideal of S−1A and let a = A ∩ A. Then a is an ideal of A,
so a = Ax for some x because A is principal. Now clearly S−1A · x ⊆ A.
Conversely if a/s ∈ A then a = s · (a/s) ∈ A ∩ A and therefore a = bx for
some b. Thus a/s = (b/s)x ∈ S−1A · x We have proved that A is principal
generated by x.
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4. Let A = Z[
√
−5] and p = {a + b

√
−5|a ≡ b mod 2}. Show that

pAp = αAp where α = 1 +
√
−5. Conclude that Ap is a principal ideal

domain with one nonzero prime ideal.

Solution. The ideal p is clearly generated by α and 2. We have 2 =
1
3
αα ∈ αAp since 3 is a unit in Ap. So pAp = 2Ap + αAp ⊆ αAp ⊆ pAp.

It remains to be shown that the local ring Ap is a principal ideal domain.
If this ring has nonprincipal ideals, then since it is Noetherian we can find
an ideal a that is maximal among the nonprinciple ideals. If a = Ap then
obviously a is principal, so a is proper. Since pAp is the unique maximal
ideal of Ap we have a ⊆ pAp = αAp and therefore α−1a ⊆ Ap. Because α−1a
is a submodule of Ap it is an ideal.

We will show that α−1a is strictly larger than a. We have αa ⊆ a since
α ∈ Ap and so α−1a ⊇ a. If it is not strictly larger than a then α−1 is integral
over Ap by the condition Int 3 on page 334. This means that we have an
integral equation:

α−N + cN−1α
−(N−1) + · · ·+ c0 = 0, ci ∈ Ap.

That means that α−1 = −(cN−1+cN−2α+. . .+c0α
N) ∈ Ap. This is impossible

since α ∈ pAp lies in the maximal ideal, hence cannot be a unit.
Now α−1a is strictly larger than Ap and by maximality of a this ideal is

principal, say α−1a = (β). Then a = (αβ) is principal, which is a contradic-
tion.

A principal ideal domain that is local, i.e. has only one nonzero prime
ideal is called a discrete valuation ring (DVR), an important class of rings.
This example illustrates the fact that localizing a Dedekind domain gives a
DVR.
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