Math 210A Homework 3

Due Tuesday October 18, 2016.

1. Let V be a finite-dimensional vector space over a field F. A linear transformation $T \in \operatorname{End}(V)$ is called semisimple if whenever W is an T invariant subspace (that is $T(W) \subseteq W$) there exists a complementary T invariant subspace W^{\prime}. Here complementary means that $V=W \oplus W^{\prime}$.
(a) If f is an irreducible polynomial in $F[x]$, let $V(f)$ be the subspace killed by a power of $f(T)$. Prove that V is the direct sum of the $V(f)$ as f runs over the irreducibles. Explain what this result has to do with the structure theory of finitely generated modules over a PID.

Remark: if F is algebraically closed, the irreducibles all have the form $f(x)=x-\lambda$ with $\lambda \in F$, and the $V(f)$ are called the generalized eigenspaces.
(b) Prove that T is semisimple if and only if its minimal polynomial m_{T} has no repeated irreducible factor.
(c) Let $n=\operatorname{dim}(V)$. Prove that $T^{N}=0$ for some $N \geqslant 1$ if and only if $T^{n}=0$. In this case T is nilpotent. Prove that with respect to some basis v_{1}, \cdots, v_{n} the matrix of T is upper triangular, and indeed $T v_{i}=v_{i-1}$ or $T v_{i}=0$.
(d) (Jordan canonical form) If $\lambda \in F$ the $k \times k$ Jordan block is the
matrix

$$
J_{k}(\lambda)=\left(\begin{array}{ccccc}
\lambda & 1 & & & \\
& \lambda & 1 & & \\
& & \ddots & \ddots & \\
& & & \lambda & 1 \\
& & & & \lambda
\end{array}\right)
$$

Use (c) to show that over an algebraically closed field T may be written as a direct sum of Jordan blocks.
(e) (Jordan decomposition.) The linear transformation T is unipotent if $T-I_{V}$ is nilpotent. Assume that F is algebraically closed and T is invertible. Show that T may be written uniquely as $T_{s} T_{u}$ where T_{s} and T_{u} commute, with T_{s} semisimple and T_{u} unipotent. Hints: To prove uniqueness, it will be useful to show that T_{s} and T_{u} preserve the generalized eigenspaces, and so reduce to the case T has only one eigenvalue λ; in this special case, T_{s} must be the scalar matrix λI. To this end you may show that if U is a transformation that commutes with T, then U preserves the generalized eigenspaces; then apply this with $U=T_{s}$ or T_{u}.
[The next two exercises are from the end of Lang, Chapter 2, page 115.]
2. Let \mathfrak{p} be a prime of the commutative ring A. Let $S=A-\mathfrak{p}$. Observe that S is a multiplicative set and consider $A_{\mathfrak{p}}=S^{-1} A$. Show that $A_{\mathfrak{p}}$ has a unique maximal ideal.
3. Show that if A is a principal ideal domain and S is a multiplicative set then $S^{-1} A$ is a principal ideal domain.
4. Let $A=\mathbb{Z}[\sqrt{-5}]$ and $\mathfrak{p}=\{a+b \sqrt{-5} \mid a \equiv b \bmod 2\}$. Show that $\mathfrak{p} A_{\mathfrak{p}}=\alpha A_{\mathfrak{p}}$ where $\alpha=1+\sqrt{-5}$. Conclude that $A_{\mathfrak{p}}$ is a principal ideal domain with one nonzero prime ideal.

