Homework 2 Solutions

Dedekind rings are introduced in Lang on page 88. Noetherian rings are dis-
cussed in Chapters 4 and 10. We will only need the definitions of both.

Let R be a commutative ring. We recall that R is called a domain if xy =0
for x, y € R implies that x =0 or y = 0. A ring R is a domain if and only if it
can be embedded in a field. If F' is a field containing R, then F is called the
field of fractions of R if every element of F' is of the form = /y with z,y € R and
y # 0. The field of fractions is uniquely determined up to isomorphism. We will
prove all these facts when we consider localization. But for example, the field of
fractions of Z is Q.

If R is a domain and F its field of fractions, then a fractional ideal a of R is
a nonzero, finitely-generated R-submodule of F. We can multiply fractional
ideals: ab is the additive subgroup of F' generated by elements ab with a € a and
beb. It is a fractional ideal.

A commutative ring R is called Noetherian if every ascending chain of ideals
terminates. That is, if a; C as C az C --- are ideals, then eventually a, = a,4.1 =
ap+2=... for sufficiently large n.

1. (a) Prove that a principal ideal domain is Noetherian.

(b) Prove that Z[v/—5] is Noetherian.

Solution: (a) If a; C as C a3 C -+ is a chain of ideals of the principal ideal
domain R, then a =] a; is an ideal. Indeed, to see that it is closed under addi-
tion, note that if z, y € a then x € a; and y € a; for some 7, . Without loss of
generality, ¢ < j, so z,y € a; and so z +y € a; Ca. (It is also clear that Ra C a.)
Since R is a principal ideal domain, a = Ra for some a € a. If a € a; then a C ag
proving the ascending chain condition.

(b) Note that Z[\/—5] =7 -1 @® Z - v/—5] is a finitely generated Z-module.
Since 7 is Noetherian, every submodule of this finitely generated module is
finitely generated. Thus R = Z[y/—5] is Noetherian as a Z-module, a fortiori as
an R-module. Alternative: Use the Hilbert Basis Theorem (Chapter IV, The-
orem 4.1) to see that the polynomial ring Z[X] is Noetherian. Let p: Z[X] —
Z]/—5] be the map f(X)+— f(v/=5). If a; C ag C -+ is an ascending chain of
ideals in Z[v/—5] then p~'(a;) C p~!(az) C - is an ascending chain of ideals in
Z[X], hence it must terminate. This implies that the chain a; C as C -+ termi-
nates.

2. Assume that R is a Noetherian domain.

(a) Prove that a nonzero R-submodule of F' is a fractional ideal if and only if
a CcR for some ce F.

(b) Prove that a principal ideal domain is a Dedekind ring.



Solution: (a) First assume that a is a fractional ideal. By hypothesis it is
finitely generated. Let a;/b; (i =1, ---, n) be the generators, and let b =[] b; be
the common denominator. The ba C R so a C ¢R with ¢ = 1/b. Conversely, if
a C cR then ¢ 'a is an ideal, finitely generated since R is Noetherian. Since a =
¢~ 'a as an R-module it is also finitely generated.

(b) Let F' be the field of fractions of the principal ideal domain R.

Lemma 1. FEvery fractional ideal of the principal ideal domain is of the form
dR for some de F*.

Proof. By part (a), a fractional ideal a is contained in ¢R for ¢ € F. Write ¢ =
a/b with a,b € R. Then ba C aR, so ba is an ideal. Thus ba =t R for some t € R
because R is a PID. Thus a=dR with d=t/a. O]

Now a fractional ideal is invertible since d 'R will serve as an inverse to dR.
The set P of fractional ideals thus forms a group. Since d — d R is a homomor-
phism from F* — B which is surjective (by the Lemma) with kernel R*, the
multiplicative group of R, we see that P F* /R*.

3. An example of an ideal in a Dedekind ring that is not principal.
Let R=7[v/—5]. It may be shown that R is a Dedekind ring. Let

I={a+bV-b5la,beZ,a=b mod 2}.

The exercise will show that this ideal is not principal.

(a) Let R* =R — {0} and I* =1 — {0}. (Some authors use R* for the multi-
plicative group of units of a ring R, but I will use R* for that.) Observe that if
N: R — 7 is the map N(z) = |z|?% so N(a + b+/=5) = a? + 5b%, then N(zw) =
N(z) N(w). So N(R*) and N(I*) are multiplicative monoids contained in Z.
Show that the smallest two nonzero elements of N(I*) are 4 and 6, while the
smallest nonzero elements of N(R*) are 1 and 4.

(b) Use (a) to show that I is not a principal ideal.

(c) Prove that I is a maximal ideal. (Hint: what is the index [R: I] as
abelian groups?)

(d) To prove that R is a Dedekind domain we need to know that every frac-
tional ideal is invertible. We will not prove this right now, but show that I? =
2R and deduce that I is invertible.

Solution. (a) Since N(a + b v/—5) = a? + 5b% we have N(a + b\/=5) > 4 if
b #+ 0. Therefore 1 = N(1) and 4 = N(2) are the smallest possible norms of ele-
ments of R. On the other hand if @ + by/—5 is known to be in I then a and b
are either both even or both odd, so 1 is not a norm; the smallest norms in this
case are 4= N(2) and 6 = N(1++/-5).

(b) If the ideal I were principal, say I = Ra, then the norms of elements of I
would be A = N(«) times the norms of elements of R, and the two smallest
norms would be A and 4A. No choice of A makes these into 4 and 6.



(c) Observe that I has index two in R. Indeed if x ¢ I then z — 1€ I and so
R /I has only two cosets. If J is an ideal between I and R, that is RD> J DI
then 2 =[R:I|=[R: J][J:I] so either [R: J]=1or [J:I]=1, ie. J=R or I. This
shows that I is maximal. Alternative: Since [R: I| = 2, the quotient ring R/ I
has only two elements and is clearly a field. Since R/ T is a field, I is maximal.

(d) Note that 2= (1 ++/=5)(1 —y/—=5) —2-2¢€ I - I. Therefore 2R C I2. On
the other hand, I? is generated by elements of the form

(a+bv—=5)(c+dv—5)=A+ B\/-5, A=ac—>5bd, B=ac+bd

where a =b mod 2 and ¢=d mod 2. We claim that A and B are both even. If a
and b are both even or if ¢ and d are both even, this is obvious, so assume a, b,
¢, d are all odd. Then ac and 5bd are odd so A is even, and similarly B. This
proves the converse inequality I? C 2 R.

4. An example of an ideal that is projective but not free. Notations
will be as in the last problem.

(a) Prove that I is not a free module.

(b) Define f: R@® R — I & I be multiplication by the matrix

[ 1+V-5 2
M_< 2 1—\/—_5)

Show that f is an isomorphism R@& R — I & I. Conclude that I is a projective
module.

Solution. For (a), note that any two elements x, y of I cannot be linearly
independent over R since their ratio lies in the field Q(v/—5) of fractions, so x/
y=a/ B with a, 8 € R and so ax — Sy =0. This means that if I is free, it is free
of rank one. Thus as an ideal, it is principal, contradicting Problem 3.

(b) Since the entries of M are in I, the map f takes R® R into I & 1. As for

the inverse map,
M-l— 1f 1-v-5 —2 .
2 —2 1++v-5

Note that the coefficients are in é[ . So applying this to I @& I produces elements
of 312 ® 31? = R ® R by Problem 3(d). Hence f: &I — R@ R is a bijection.
We see that I & I is free. Since it is a summand in a free module, it is projec-
tive.



