Homework 2 Solutions

Dedekind rings are introduced in Lang on page 88. Noetherian rings are discussed in Chapters 4 and 10 . We will only need the definitions of both.

Let R be a commutative ring. We recall that R is called a domain if $x y=0$ for $x, y \in R$ implies that $x=0$ or $y=0$. A ring R is a domain if and only if it can be embedded in a field. If F is a field containing R, then F is called the field of fractions of R if every element of F is of the form x / y with $x, y \in R$ and $y \neq 0$. The field of fractions is uniquely determined up to isomorphism. We will prove all these facts when we consider localization. But for example, the field of fractions of \mathbb{Z} is \mathbb{Q}.

If R is a domain and F its field of fractions, then a fractional ideal \mathfrak{a} of R is a nonzero, finitely-generated R-submodule of F. We can multiply fractional ideals: $\mathfrak{a b}$ is the additive subgroup of F generated by elements $a b$ with $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$. It is a fractional ideal.

A commutative ring R is called Noetherian if every ascending chain of ideals terminates. That is, if $\mathfrak{a}_{1} \subseteq \mathfrak{a}_{2} \subseteq \mathfrak{a}_{3} \subseteq \cdots$ are ideals, then eventually $\mathfrak{a}_{n}=\mathfrak{a}_{n+1}=$ $\mathfrak{a}_{n+2}=\ldots$ for sufficiently large n.

1. (a) Prove that a principal ideal domain is Noetherian.
(b) Prove that $\mathbb{Z}[\sqrt{-5}]$ is Noetherian.

Solution: (a) If $\mathfrak{a}_{1} \subseteq \mathfrak{a}_{2} \subseteq \mathfrak{a}_{3} \subseteq \cdots$ is a chain of ideals of the principal ideal domain R, then $\mathfrak{a}=\bigcup \mathfrak{a}_{i}$ is an ideal. Indeed, to see that it is closed under addition, note that if $x, y \in \mathfrak{a}$ then $x \in \mathfrak{a}_{i}$ and $y \in \mathfrak{a}_{j}$ for some i, j. Without loss of generality, $i \leqslant j$, so $x, y \in \mathfrak{a}_{j}$ and so $x+y \in \mathfrak{a}_{j} \subseteq \mathfrak{a}$. (It is also clear that $R \mathfrak{a} \subseteq \mathfrak{a}$.) Since R is a principal ideal domain, $\mathfrak{a}=R \alpha$ for some $\alpha \in \mathfrak{a}$. If $\alpha \in \mathfrak{a}_{k}$ then $\mathfrak{a} \subseteq \mathfrak{a}_{k}$ proving the ascending chain condition.
(b) Note that $\mathbb{Z}[\sqrt{-5}]=\mathbb{Z} \cdot 1 \oplus \mathbb{Z} \cdot \sqrt{-5}]$ is a finitely generated \mathbb{Z}-module. Since \mathbb{Z} is Noetherian, every submodule of this finitely generated module is finitely generated. Thus $R=\mathbb{Z}[\sqrt{-5}]$ is Noetherian as a \mathbb{Z}-module, a fortiori as an R-module. Alternative: Use the Hilbert Basis Theorem (Chapter IV, Theorem 4.1) to see that the polynomial ring $\mathbb{Z}[X]$ is Noetherian. Let $p: \mathbb{Z}[X] \longrightarrow$ $\mathbb{Z}[\sqrt{-5}]$ be the map $f(X) \mapsto f(\sqrt{-5})$. If $\mathfrak{a}_{1} \subseteq \mathfrak{a}_{2} \subseteq \cdots$ is an ascending chain of ideals in $\mathbb{Z}[\sqrt{-5}]$ then $p^{-1}\left(\mathfrak{a}_{1}\right) \subseteq p^{-1}\left(\mathfrak{a}_{2}\right) \subseteq \cdots$ is an ascending chain of ideals in $\mathbb{Z}[X]$, hence it must terminate. This implies that the chain $\mathfrak{a}_{1} \subseteq \mathfrak{a}_{2} \subseteq \cdots$ terminates.
2. Assume that R is a Noetherian domain.
(a) Prove that a nonzero R-submodule of F is a fractional ideal if and only if $\mathfrak{a} \subseteq c R$ for some $c \in F$.
(b) Prove that a principal ideal domain is a Dedekind ring.

Solution: (a) First assume that \mathfrak{a} is a fractional ideal. By hypothesis it is finitely generated. Let $a_{i} / b_{i}(i=1, \cdots, n)$ be the generators, and let $b=\prod b_{i}$ be the common denominator. The $b \mathfrak{a} \subseteq R$ so $\mathfrak{a} \subseteq c R$ with $c=1 / b$. Conversely, if $\mathfrak{a} \subseteq c R$ then $c^{-1} \mathfrak{a}$ is an ideal, finitely generated since R is Noetherian. Since $\mathfrak{a} \cong$ $c^{-1} \mathfrak{a}$ as an R-module it is also finitely generated.
(b) Let F be the field of fractions of the principal ideal domain R.

Lemma 1. Every fractional ideal of the principal ideal domain is of the form $d R$ for some $d \in F^{\times}$.

Proof. By part (a), a fractional ideal \mathfrak{a} is contained in $c R$ for $c \in F$. Write $c=$ a / b with $a, b \in R$. Then $b \mathfrak{a} \subseteq a R$, so $b \mathfrak{a}$ is an ideal. Thus $b \mathfrak{a}=t R$ for some $t \in R$ because R is a PID. Thus $a=d R$ with $d=t / a$.

Now a fractional ideal is invertible since $d^{-1} R$ will serve as an inverse to $d R$. The set \mathfrak{P} of fractional ideals thus forms a group. Since $d \mapsto d R$ is a homomorphism from $F^{\times} \longrightarrow \mathfrak{P}$ which is surjective (by the Lemma) with kernel R^{\times}, the multiplicative group of R, we see that $\mathfrak{P} \cong F^{\times} / R^{\times}$.
3. An example of an ideal in a Dedekind ring that is not principal. Let $R=\mathbb{Z}[\sqrt{-5}]$. It may be shown that R is a Dedekind ring. Let

$$
I=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}, a \equiv b \bmod 2\}
$$

The exercise will show that this ideal is not principal.
(a) Let $R^{*}=R-\{0\}$ and $I^{*}=I-\{0\}$. (Some authors use R^{*} for the multiplicative group of units of a ring R, but I will use R^{\times}for that.) Observe that if $N: R \longrightarrow \mathbb{Z}$ is the map $N(z)=|z|^{2}$, so $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$, then $N(z w)=$ $N(z) N(w)$. So $N\left(R^{*}\right)$ and $N\left(I^{*}\right)$ are multiplicative monoids contained in \mathbb{Z}. Show that the smallest two nonzero elements of $N\left(I^{*}\right)$ are 4 and 6 , while the smallest nonzero elements of $N\left(R^{*}\right)$ are 1 and 4 .
(b) Use (a) to show that I is not a principal ideal.
(c) Prove that I is a maximal ideal. (Hint: what is the index $[R: I]$ as abelian groups?)
(d) To prove that R is a Dedekind domain we need to know that every fractional ideal is invertible. We will not prove this right now, but show that $I^{2}=$ $2 R$ and deduce that I is invertible.

Solution. (a) Since $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$ we have $N(a+b \sqrt{-5})>4$ if $b \neq 0$. Therefore $1=N(1)$ and $4=N(2)$ are the smallest possible norms of elements of R. On the other hand if $a+b \sqrt{-5}$ is known to be in I then a and b are either both even or both odd, so 1 is not a norm; the smallest norms in this case are $4=N(2)$ and $6=N(1+\sqrt{-5})$.
(b) If the ideal I were principal, say $I=R \alpha$, then the norms of elements of I would be $A=N(\alpha)$ times the norms of elements of R, and the two smallest norms would be A and $4 A$. No choice of A makes these into 4 and 6 .
(c) Observe that I has index two in R. Indeed if $x \notin I$ then $x-1 \in I$ and so R / I has only two cosets. If J is an ideal between I and R, that is $R \supset J \supset I$ then $2=[R: I]=[R: J][J: I]$ so either $[R: J]=1$ or $[J: I]=1$, i.e. $J=R$ or I. This shows that I is maximal. Alternative: Since $[R: I]=2$, the quotient ring R / I has only two elements and is clearly a field. Since R / I is a field, I is maximal.
(d) Note that $2=(1+\sqrt{-5})(1-\sqrt{-5})-2 \cdot 2 \in I \cdot I$. Therefore $2 R \subseteq I^{2}$. On the other hand, I^{2} is generated by elements of the form

$$
(a+b \sqrt{-5})(c+d \sqrt{-5})=A+B \sqrt{-5}, \quad A=a c-5 b d, \quad B=a c+b d
$$

where $a \equiv b \bmod 2$ and $c \equiv d \bmod 2$. We claim that A and B are both even. If a and b are both even or if c and d are both even, this is obvious, so assume a, b, c, d are all odd. Then $a c$ and $5 b d$ are odd so A is even, and similarly B. This proves the converse inequality $I^{2} \subset 2 R$.
4. An example of an ideal that is projective but not free. Notations will be as in the last problem.
(a) Prove that I is not a free module.
(b) Define $f: R \oplus R \longrightarrow I \oplus I$ be multiplication by the matrix

$$
M=\left(\begin{array}{cc}
1+\sqrt{-5} & 2 \\
2 & 1-\sqrt{-5}
\end{array}\right)
$$

Show that f is an isomorphism $R \oplus R \longrightarrow I \oplus I$. Conclude that I is a projective module.

Solution. For (a), note that any two elements x, y of I cannot be linearly independent over R since their ratio lies in the field $\mathbb{Q}(\sqrt{-5})$ of fractions, so $x /$ $y=\alpha / \beta$ with $\alpha, \beta \in R$ and so $\alpha x-\beta y=0$. This means that if I is free, it is free of rank one. Thus as an ideal, it is principal, contradicting Problem 3.
(b) Since the entries of M are in I, the map f takes $R \oplus R$ into $I \oplus I$. As for the inverse map,

$$
M^{-1}=\frac{1}{2}\left(\begin{array}{cc}
1-\sqrt{-5} & -2 \\
-2 & 1+\sqrt{-5}
\end{array}\right)
$$

Note that the coefficients are in $\frac{1}{2} I$. So applying this to $I \oplus I$ produces elements of $\frac{1}{2} I^{2} \oplus \frac{1}{2} I^{2}=R \oplus R$ by Problem 3(d). Hence $f: I \oplus I \longrightarrow R \oplus R$ is a bijection. We see that $I \oplus I$ is free. Since it is a summand in a free module, it is projective.

