
Homework 2 Solutions

Dedekind rings are introduced in Lang on page 88. Noetherian rings are dis-
cussed in Chapters 4 and 10. We will only need the de�nitions of both.

Let R be a commutative ring. We recall that R is called a domain if xy = 0
for x; y 2 R implies that x = 0 or y = 0. A ring R is a domain if and only if it
can be embedded in a �eld. If F is a �eld containing R, then F is called the
�eld of fractions of R if every element of F is of the form x/y with x; y 2R and
y =/ 0. The �eld of fractions is uniquely determined up to isomorphism. We will
prove all these facts when we consider localization. But for example, the �eld of
fractions of Z is Q.

If R is a domain and F its �eld of fractions, then a fractional ideal a of R is
a nonzero, finitely-generated R-submodule of F . We can multiply fractional
ideals: ab is the additive subgroup of F generated by elements ab with a2 a and
b2 b. It is a fractional ideal.

A commutative ring R is called Noetherian if every ascending chain of ideals
terminates. That is, if a1 � a2 � a3 � ��� are ideals, then eventually an = an+1 =
an+2= ::: for su�ciently large n.

1. (a) Prove that a principal ideal domain is Noetherian.
(b) Prove that Z[ ¡5

p
] is Noetherian.

Solution: (a) If a1 � a2 � a3 � ��� is a chain of ideals of the principal ideal
domain R, then a =

S
ai is an ideal. Indeed, to see that it is closed under addi-

tion, note that if x; y 2 a then x 2 ai and y 2 aj for some i; j. Without loss of
generality, i6 j, so x; y 2 aj and so x+ y 2 aj � a. (It is also clear that Ra� a.)
Since R is a principal ideal domain, a=R� for some � 2 a. If � 2 ak then a� ak
proving the ascending chain condition.

(b) Note that Z[ ¡5
p

] = Z � 1 � Z � ¡5
p

] is a �nitely generated Z-module.
Since Z is Noetherian, every submodule of this finitely generated module is
�nitely generated. Thus R = Z[ ¡5

p
] is Noetherian as a Z-module, a fortiori as

an R-module. Alternative: Use the Hilbert Basis Theorem (Chapter IV, The-
orem 4.1) to see that the polynomial ring Z[X] is Noetherian. Let p: Z[X] ¡!
Z[ ¡5
p

] be the map f(X) 7! f( ¡5
p

). If a1 � a2 � ��� is an ascending chain of
ideals in Z[ ¡5

p
] then p¡1(a1) � p¡1(a2) � ��� is an ascending chain of ideals in

Z[X], hence it must terminate. This implies that the chain a1 � a2 � ��� termi-
nates.

2. Assume that R is a Noetherian domain.
(a) Prove that a nonzero R-submodule of F is a fractional ideal if and only if

a� cR for some c2F .
(b) Prove that a principal ideal domain is a Dedekind ring.
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Solution: (a) First assume that a is a fractional ideal. By hypothesis it is
�nitely generated. Let ai/bi (i = 1; ���; n) be the generators, and let b =

Q
bi be

the common denominator. The ba � R so a � cR with c = 1/ b. Conversely, if
a� cR then c¡1a is an ideal, �nitely generated since R is Noetherian. Since a=�
c¡1a as an R-module it is also �nitely generated.

(b) Let F be the �eld of fractions of the principal ideal domain R.

Lemma 1. Every fractional ideal of the principal ideal domain is of the form
dR for some d2F�.

Proof. By part (a), a fractional ideal a is contained in cR for c 2 F . Write c =
a/b with a; b 2R. Then ba� aR, so ba is an ideal. Thus ba= tR for some t 2R
because R is a PID. Thus a= dR with d= t/a. �

Now a fractional ideal is invertible since d¡1R will serve as an inverse to dR.
The set P of fractional ideals thus forms a group. Since d 7! dR is a homomor-
phism from F� ¡! P which is surjective (by the Lemma) with kernel R�, the
multiplicative group of R, we see that P=�F�/R�.

3. An example of an ideal in a Dedekind ring that is not principal.
Let R=Z[ ¡5

p
]. It may be shown that R is a Dedekind ring. Let

I = fa+ b ¡5
p

ja; b2Z; a� b mod 2g:

The exercise will show that this ideal is not principal.
(a) Let R�= R ¡ f0g and I�= I ¡ f0g. (Some authors use R� for the multi-

plicative group of units of a ring R, but I will use R� for that.) Observe that if
N : R ¡! Z is the map N(z) = jz j2, so N(a + b ¡5

p
) = a2 + 5b2, then N(zw) =

N(z) N (w). So N(R�) and N(I�) are multiplicative monoids contained in Z.
Show that the smallest two nonzero elements of N(I�) are 4 and 6, while the
smallest nonzero elements of N (R�) are 1 and 4.

(b) Use (a) to show that I is not a principal ideal.
(c) Prove that I is a maximal ideal. (Hint: what is the index [R: I ] as

abelian groups?)
(d) To prove that R is a Dedekind domain we need to know that every frac-

tional ideal is invertible. We will not prove this right now, but show that I2 =
2R and deduce that I is invertible.

Solution. (a) Since N(a + b ¡5
p

) = a2 + 5b2 we have N (a + b ¡5
p

) > 4 if
b =/ 0. Therefore 1 = N(1) and 4 = N(2) are the smallest possible norms of ele-
ments of R. On the other hand if a + b ¡5

p
is known to be in I then a and b

are either both even or both odd, so 1 is not a norm; the smallest norms in this
case are 4=N(2) and 6=N(1+ ¡5

p
).

(b) If the ideal I were principal, say I =R�, then the norms of elements of I
would be A = N(�) times the norms of elements of R, and the two smallest
norms would be A and 4A. No choice of A makes these into 4 and 6.



(c) Observe that I has index two in R. Indeed if x 2/ I then x¡ 1 2 I and so
R / I has only two cosets. If J is an ideal between I and R, that is R � J � I
then 2= [R: I] = [R: J ][J : I] so either [R: J ] = 1 or [J : I] = 1, i.e. J =R or I. This
shows that I is maximal. Alternative: Since [R: I] = 2, the quotient ring R/I
has only two elements and is clearly a �eld. Since R/I is a �eld, I is maximal.

(d) Note that 2 = (1 + ¡5
p

)(1¡ ¡5
p

)¡ 2 � 2 2 I � I. Therefore 2R � I2. On
the other hand, I2 is generated by elements of the form

(a+ b ¡5
p

)(c+ d ¡5
p

)=A+B ¡5
p

; A= ac¡ 5bd; B= ac+ bd

where a� b mod 2 and c� d mod 2. We claim that A and B are both even. If a
and b are both even or if c and d are both even, this is obvious, so assume a; b;
c; d are all odd. Then ac and 5b d are odd so A is even, and similarly B. This
proves the converse inequality I2� 2R.

4. An example of an ideal that is projective but not free. Notations
will be as in the last problem.

(a) Prove that I is not a free module.
(b) De�ne f :R�R¡! I � I be multiplication by the matrix

M =

 
1+ ¡5

p
2

2 1¡ ¡5
p

!
:

Show that f is an isomorphism R�R¡! I � I. Conclude that I is a projective
module.

Solution. For (a), note that any two elements x; y of I cannot be linearly
independent over R since their ratio lies in the �eld Q( ¡5

p
) of fractions, so x/

y=�/� with �; � 2R and so �x¡ �y=0. This means that if I is free, it is free
of rank one. Thus as an ideal, it is principal, contradicting Problem 3.

(b) Since the entries of M are in I, the map f takes R�R into I � I. As for
the inverse map,

M¡1=
1
2

 
1¡ ¡5

p
¡2

¡2 1+ ¡5
p

!
:

Note that the coe�cients are in 1

2
I. So applying this to I � I produces elements

of 1

2
I2� 1

2
I2=R �R by Problem 3(d). Hence f : I � I ¡! R � R is a bijection.

We see that I � I is free. Since it is a summand in a free module, it is projec-
tive.


