Math 210A Homework

Due Tuesday October 11, 2016.
Dedekind rings are introduced in Lang on page 88. Noetherian rings are discussed in Chapters 4 and 10. We will only need the definitions of both.

Let R be a commutative ring. We recall that R is called a domain if $x y=0$ for $x, y \in R$ implies that $x=0$ or $y=0$. A ring R is a domain if and only if it can be embedded in a field. If F is a field containing R, then F is called the field of fractions of R if every element of F is of the form x / y with $x, y \in R$ and $y \neq 0$. The field of fractions is uniquely determined up to isomorphism. We will prove all these facts when we consider localization. But for example, the field of fractions of \mathbb{Z} is \mathbb{Q}.

If R is a domain and F its field of fractions, then a fractional ideal \mathfrak{a} of R is a nonzero, finitely-generated R-submodule of F. We can multiply fractional ideals: $\mathfrak{a b}$ is the additive subgroup of F generated by elements $a b$ with $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$. It is a fractional ideal.

A commutative ring R is called Noetherian if every ascending chain of ideals terminates. That is, if $\mathfrak{a}_{1} \subseteq \mathfrak{a}_{2} \subseteq \mathfrak{a}_{3} \subseteq \cdots$ are ideals, then eventually $\mathfrak{a}_{n}=\mathfrak{a}_{n+1}=\mathfrak{a}_{n+2}=\ldots$ for sufficiently large n.

1. (a) Prove that a principal ideal domain is Noetherian.
(b) Prove that $\mathbb{Z}[\sqrt{-5}]$ is Noetherian.
2. Assume that R is a Noetherian domain.
(a) Prove that a nonzero R-submodule of F is a fractional ideal if and only if $\mathfrak{a} \subseteq c R$ for some $c \in F$.
(b) The fractional ideals in R form a monoid under multiplication. The ring R is called a Dedekind ring if they form a group. R itself will serve as the identity. Prove that a principal ideal domain is a Dedekind ring.
3. An example of an ideal in a Dedekind ring that is not principal. Let $R=\mathbb{Z}[\sqrt{-5}]$. It may be shown that R is a Dedekind ring. Let

$$
I=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}, a \equiv b \bmod 2\}
$$

The exercise will show that this ideal is not principal.
(a) Let $R^{*}=R-\{0\}$ and $I^{*}=I-\{0\}$. (Some authors use R^{*} for the multiplicative group of nonzero elements of a ring R, but I will use R^{\times}for that.) Observe that if $N: R \longrightarrow \mathbb{Z}$ is the map $N(z)=|z|^{2}$, so $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$, then $N(z w)=N(z) N(w)$. So $N\left(R^{*}\right)$ and $N\left(I^{*}\right)$ are multiplicatively closed subsets of \mathbb{Z}. Show that the smallest two nonzero elements of $N\left(I^{*}\right)$ are 4 and 6 , while the smallest nonzero elements of $N\left(R^{*}\right)$ are 1 and 4.
(b) Use (a) to show that I is not a principal ideal.
(c) Prove that I is a maximal ideal. (Hint: what is the index $[R: I]$ as abelian groups?)
(d) To prove that R is a Dedekind domain we need to know that every fractional ideal is invertible. We will not prove this right now, but show that $I^{2}=2 R$ and deduce that I is invertible.
4. An example of an ideal that is projective but not free. Notations will be as in the last problem.
(a) Prove that I is not a free module.
(b) Define $f: R \oplus R \longrightarrow I \oplus I$ be multiplication by the matrix

$$
M=\left(\begin{array}{cc}
1+\sqrt{-5} & 2 \\
2 & 1-\sqrt{-5}
\end{array}\right)
$$

Show that f is an isomorphism $R \oplus R \longrightarrow I \oplus I$. Conclude that I is a projective module.

