Math 210A Homework 1

Due Tuesday October 4, 2016.

Problem 1. Let R be a ring, $\left\{M_{i}\right\}_{i \in I}$ an indexed family of R-modules. Define the direct product $\prod_{i} M_{i}$ to be the Cartesian product, that is, the set of families $\left(m_{i}\right)_{i \in I}$ with $m_{i} \in M_{i}$. This is itself an R-module with the multiplication and addition componentwise. The direct sum $\bigoplus_{i} M_{i}$ is defined to be the submodule in which $m_{i}=0$ for all but finitely many i. Thus $\prod_{i} M_{i}=\bigoplus_{i} M_{i}$ if the index set I is finite, or more generally if all but finitely many M_{i} are zero; but not otherwise.
(a) Prove the universal property of the direct product: denote $P=\prod_{i} M_{i}$. If $j \in I$ define a homomorphism $p_{j}: P \longrightarrow M_{j}$ by having p_{j} send $\left(m_{i}\right)_{i \in I}$ to m_{j}. The maps p_{j} are called the projections onto the components of the product. The universal property asserts that given a module J and a family of homomorphisms $f_{i}: J \longrightarrow M_{i}$ there is a unique homomorphism $f: J \longrightarrow P$ such that $f_{i}=p_{i} \circ f$.
(b) Prove that the universal property of the product characterizes P up to isomorphism: that is, if P^{\prime} is another module with homomorphisms p_{i}^{\prime} : $P^{\prime} \longrightarrow M_{i}$ having the same universal property, show that P and P^{\prime} are isomorphic. The best solution to this does not involve the definition of P but only the universal property.
(c) Define homorphisms $\rho_{i}: M_{i} \longrightarrow \bigoplus_{i \in I} M_{i}$ by letting $\rho_{j}\left(m_{j}\right)$ be the family $\left(n_{i}\right)_{i \in I}$ where $n_{i}=m_{i}$ if $i=j, 0$ otherwise. Use these to formulate a universal property for the direct sum similar to (a).

Problem 2. If $|I|=2$ and $\left\{M_{i}\right\}$ consists of the two modules M and N we will use the notation $M \times N$ for the direct product, or $M \oplus N$ for the direct sum. They are the same object, since $|I|$ is finite, but the notation $M \times N$ is appropriate if we are emphasizing the maps p_{i}, which we will now denote $p: M \times N \longrightarrow M$ and $q: M \times N \longrightarrow N$. Similarly the maps ρ_{i} will be denoted $\rho: M \longrightarrow M \oplus N$ and $\sigma: N \longrightarrow M \otimes N$. Let $P=M \times N=M \oplus N$. We can use the four maps p, q, ρ, σ together as follows.
(a) Prove that $p \circ \rho=1_{M}, p \circ \sigma=0$ (the zero map $N \longrightarrow M$) and $q \circ \sigma=1_{N}$, $q \circ \rho=0$, and that $\rho \circ p+\sigma \circ q=1_{P}$ in the sense that if $x \in P$ then $x=\rho(p(x))+\sigma(q(x))$.
(b) Show that this property characterizes $M \times N$ up to isomorphism: that is, given a module P with four maps $p: P \longrightarrow M, q: P \longrightarrow N, \rho: M \longrightarrow P$ and $\sigma: N \longrightarrow P$ satisfying the properties in (a), then $P \cong M \times N$.
(c) Let M, N be R-modules. Let $\operatorname{Hom}_{R}(M, N)$ be the abelian group of maps $f: M \longrightarrow N$ such that $f(0)=0, f(x+y)=f(x)+f(y)$ and $f(r x)=r f(x)$ for $r \in R, x \in M$. If R is commutative, show that $\operatorname{Hom}_{R}(M, N)$ is an R-module with $(r f)(x)=r \cdot f(x)=f(r x)$.
(d) Use (b) to prove that $\operatorname{Hom}_{R}\left(M_{1} \oplus M_{2}, N\right) \cong \operatorname{Hom}_{R}\left(M_{1}, N\right) \oplus \operatorname{Hom}_{R}\left(M_{2}, N\right)$ and $\operatorname{Hom}_{R}\left(M, N_{1} \oplus N_{2}\right) \cong \operatorname{Hom}_{R}\left(M, N_{1}\right) \oplus \operatorname{Hom}_{R}\left(M, N_{2}\right)$.

