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Free modules

We will consider objects described by universal properties. We
will give two examples: free modules over a ring, and tensor
product of modules over a commutative ring such as a field.
Let R be a ring, and X a set. The free-module FX may be
defined by its universal property which is Theorem 6 in [DF]
Section 10.3. This comes equipped with a map i : X −→ FX

which is part of the data characterizing the free module.

Definition (The Universal Property of the Freem Module)
If M is any R-module and φ : X −→ M is any map, then there is
a unique R-module homomorphism Φ : FX −→ M such that
φ = Φ ◦ i.
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The universal property diagrammed

If M is any R-module and φ : X −→ M is any map, then there is
a unique R-module homomorphism Φ : FX −→ M such that
φ = Φ ◦ i.

X FX

M

i

φ
Φ
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The universal property is a valid definition

Let us note that FX is characterized up to isomorphism by this
property, so we can use it to define the rree module.

If F′X and i′ : X −→ F′X is another free-module satisfying the
same universal property, then using the universal property for
FX there is an R-module homomorphism α : FX −→ F′X such
that i′ = α ◦ i. Using the universal property for F′X there is a
homomorphism β : F′X −→ FX such that i = β ◦ i′. We claim that
α and β are inverse homomorphisms. To see this, note that
β ◦ α ◦ i = β ◦ i′ = i. Now βα and 1FX (the identity map) are both
homomorphisms FX −→ FX such that βα ◦ i = i = 1FX . The
universal property implies that there is a unique homomorphism
λ : FX −→ FX such that λ ◦ i = i and so βα = 1FX . Similarly
αβ = 1F′X

. So α and β are inverse homomorphisms.
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The universal property is a valid definition (continued)

FX

X

F′X

α

i

i′
β

The universal property of FX produces α
The universal property of F′X produces β
The uniquess in the universal property shows βα = 1FX
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Functors

Let us recall the notion of a functor. A functor is like a
“homomorphism of categories,” though that statement is not
strictly correct, only suggestive.

Let C and D be categories. A functor F from C to D is a rule
that associates to every object A of C an object FA of D, and
also if f : A −→ B is a morphism in the category C, there is a
morphism F f : FA −→ FB in the category D.

It is assumed that if 1A ∈ Hom(A,A) is the identity morphism
then F1A = 1FA and the functor respects compositions in the
sense that if f : A −→ B, g : B −→ C then F(g ◦ f ) = Fg ◦ F f .
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The free module is a functor

Let us show that the free-module is a functor.

For every set X, the free module is only characterized up to
isomorphism by the universal property, but we pick a particular
realization iX : X −→ FX. Thus FX = FX is supposed to be a
functor. If f : X −→ Y is a map of sets, we need to define a map
F f : FX −→ FY . We obtain this by use of the universal property.
From the map iY ◦ f : X −→ FY the universal property produces
a homorphism F f : FX −→ FY , which is the unique
homomorphism such that F f ◦ iX = iY ◦ f . It is easy to see that
F is a functor from the category of sets to the category of
R-modules.
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The free module is a functor (continued)

Showing how given a map f : X → Y the universal propery of FX

produces an R-module homomorphism FX → FY .

X Y

FX FY

f

iX iY
F f

Denoting this homomorphism F f : FX → FY , the free module
becomes a functor F from the category of sets to the category
of R-modules.
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Universal properties as initial objects in a category

In Lecture 1 we defined the notion of an initial object in a
category, and showed that any two initial objects are
isomorphic. This argument is formally very similar to the above.
(Please review.)

Problem
Can you deduce the uniqueness of the free module (up to
isomorphism) from the uniqueness of the initial object? The
problem is to define the right category.
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Contravariant functors

What we have defined is sometimes called a covariant functor.
There are also contravariant functors. For a contravariant
functor, the directions of arrows is reversed. Thus if G is a
contravariant functor and f : A −→ B is a morphism in the
category C then F f : FB −→ FA and of course
F(g ◦ f ) = F f ◦ Fg when the composition g ◦ f is defined.

An example of a contragredient functor is the dual vector space.
This is a functor from the category V of finite-dimensional
vector spaces over a field F to itself. To see that this functor is
contragredient suppose f : V −→ W is a homomorphism. Then
define f ∗ : W∗ −→ V∗ to be composition with f . Thus if λ ∈ W∗

so λ is a functional W −→ F then f ∗(λ) = λ ◦ f ∈ V∗.
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Hom sets as functors

Hom sets are functors in both variables. Let us consider first
now Hom(A,B) is functorial in B.

For definiteness, let us consider the category of R-modules.
With an object A fixed, Hom(A,B) is functorial in B. That is, if
f : B −→ B′ is any homomorphism, then composition with f is a
functor from the category of R-modules to the category of sets.
Thus Hom(A, f ) is the map Hom(A,B) −→ Hom(A,B′) that is
composition with f :

Hom(A, f )(g) = gf ∈ Hom(A,B′), g ∈ Hom(A,B).

For brevity we denote this map Hom(A, f ) = f∗.

We denote this functor Hom(A,−).
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Hom is a bifunctor

Similarly if B is a fixed module then Hom(−,B) is a functor from
R-modules to sets, but this functor is contragredient! Please
check this. To summarize, Hom(A,B) is a functor in both A and
B. It is covariant in B but contravariant in A.

There is a compatibility between the two functors Hom(A,−)
and Hom(−,B). Suppose that f : A −→ A′ and g : B −→ B′ are
two homomorphisms. Then

Hom(A′,B) Hom(A,B)

Hom(A′,B′) Hom(A,B′)

f ∗

g∗ g∗

f ∗

commutes. We call Hom a bifunctor.
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References

For tensor product, we will not follow Dummit and Foote, since
we will consider only tensor products over commutative rings,
mainly a field.

In addition to Brian Conrad’s lecture of Thursday, April 16, we
can recommend the treatment in Lang’s Algebra, which
restricts to a commutative ring.

In Lang’s Algebra, which usually contains more information
about any topic than Dummit and Foote, only tensor products
over commutative rings are considered. In my opinion, Dummit
and Foote work in more generality than we will need and
thereby make the theory more complicated.



Free modules Functors Tensors Naturality

Bilinear maps

Assume that the ground ring R is commutative; often we will
take R = F to be a field. Let A, B and C be R-modules. A map
φ : A× B −→ C is bilinear if

φ(r1a1 + r2a2, b) = r1φ(a1, b) + r2(a2, b),

φ(a, r1b1 + r2b2) = r1φ(a, b1) + r2φ(a, b2).

In other words, it is linear in the first variable (if b is fixed) and
also linear in the second variable (if a is fixed).
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The tensor product over a commutative ring

The tensor product A⊗ B is characterized by a universal
property.

Definition (The universal property of ⊗)
The tensor product is an R-module A⊗ B, with a bilinear
map ⊗ : A× B −→ A⊗ B.
Second, if φ : A× B −→ C is any bilinear map, then there is
a unique linear map (homomorphism) Φ : A⊗ B −→ C such
that φ = Φ ◦ ⊗.

We usually write a⊗ b instead of ⊗(a, b).
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The universal property diagrammed

As will the free module, the universal propery characterizes the
tensor product up to isomorphism.

A× B A⊗ B

C

⊗

φ

Φ

The proof is the same as for the free module. So the issue is
whether a module A⊗ B and a bilinear map ⊗ satisfying this
property exists.
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Existence of the tensor product

In his Thursday. April 16 lecture, Brian proved the existence of
the tensor product if R = F is a field, so that modules are vector
spaces, which he assumed finite-dimensional.

If R is an arbitrary commutative ring, then a tensor product
exists with exactly the same definition. We will not give the
proof, but see Lang’s Algebra for a proof. The universal
property characterizes the tensor product up to isomorphism.
Since the plan is to base proofs on the universal property
instead of a particular construction, the proof is not so
important.
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General remarks

Like Hom, The tensor product is a bifunctor. Unlike Hom, it is
covariant in both variables.

Our goal is to use the universal property to establish properties.
Thus a particular realization of A⊗ B is not as important, and
we will not worry about the proof.

For vector spaces, it is clear from the construction in Brian
Conrad’s lecture that if V,W are vector spaces over F then

dim(V ⊗W) = dim(V) dim(W).

More precisely if vi are a basis of V and wj are a basis of W,
then vi ⊗ wj are a basis of V ⊗W, so the dimensions are
multiplicative.
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Nuances when R is not a field

If F is a field, dim(V ⊗W) = dim(V) dim(W) implies that if V,W
are nonzero, so is V ⊗W.

On the other hand suppose that R = Z. We will show that there
can be two nonzero R-modules whose tensor product is zero!
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The Lemma

With R = Z, an R-module is just an abelian group M. Now Q is
an example of an abelian group.

Lemma
Let M be a finite abelian group, regarded as a Z-module. Then
for any Z-module A, any bilinear map φ : Q×M −→ A is the
zero map.

Indeed, let q ∈ Q and x ∈ M. Since M is finite, nx = 0 for some
n. Then

φ(q, x) = φ(nq/n, x) = nφ(q/n, x) = φ(q/n, nx) = φ(q/n, 0) = 0.
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The example

Proposition
Let M be a finite abelian group, regarded as a Z-module. Then
Q⊗Z M = 0.

We deduce this from the Lemma we just proved.

Lemma
Let M be a finite abelian group, regarded as a Z-module. Then
for any Z-module A, any bilinear map φ : Q×M −→ A is the
zero map.

By the Lemma, the zero module satisfies the universal property
of the tensor product, so Q⊗M = 0. Contrast this with the
homework problem that if R = F is a field, then V ⊗W = 0
implies V = 0 or W = 0
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The relation between Hom and ⊗

We now specialize to the case where the ground ring R = F is a
field. Thursday Brian Conrad proved

Hom(V,W) ∼= V∗ ⊗W.

To repeat the proof, V∗ consists of linear functionals
λ : V −→ F. We define a bilinear map
θ : V∗ ×W −→ Hom(V,W) as follows. If λ ∈ V∗, v ∈ V let θ(λ, v)
be the rank one linear map V −→ W defined by

θ(λ, v)(x) = λ(x)v.

The universal property of V∗ ⊗W gives us a homomorphism
Θ : V∗ ⊗W −→ Hom(V,W) such that Θ(λ⊗ v) = θ(λ, v). The
homomorphism Θ is surjective since any linear transformation
in Hom(V,W) is a sum of rank one transformations. The
dimensions are equal, so Θ is an isomorphism.
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Natural transformations

Suppose that C and D are two categories and both F and G are
functors from C to D. Suppose that for every object A of C there
is a morphism µA : FA −→ GA. The morphism µA is called
natural if for every morphism f : A −→ B in the category C we
have µB ◦ (F f ) = (Gf ) ◦ µA, so the following diagram commutes:

FA FB

GA GB

F f

µA µB

F f

There is a similar notion of naturality if F and G are
contravariant. But they must both be either covariant or
contravariant.
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The Hom−⊗ relation is natural

We recall that the bifunctor Hom(V,W) is contragredient in V
and covariant in W, whereas V ⊗W is covariant in both
variables. To line them up we apply the contragredient dual
space functor to V. This leads to the isomorphism

Θ : V∗ ⊗W −→ Hom(V,W)

which we have already proved. This isomorphism is natural in
both V and W.
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Natuality in W

Let us fix V and let g : W −→ W ′ be a linear transformation.
Then naturality means that we have a commutative diagram:

V∗ ⊗W Hom(V,W)

V∗ ⊗W ′ Hom(V,W ′)

Θ

1V∗⊗g g∗

Θ

By the universal property, it is enough to check
V∗ ×W Hom(V,W)

V∗ ⊗W ′ Hom(V,W ′)

θ

1V∗×g g∗

θ

Both compositions send (λ,w) to v 7→ λ(v)g(w).
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Naturality in V

The isomorphism Θ is also natural in V∗. We have already
observed that both functors V∗ ⊗W and Hom(V,W) are
contragredient in V∗. So if f : V −→ V

′
is a homomorphism, the

commutativity we need has the form

(V ′)∗ ⊗W Hom(V,W)

V∗ ⊗W Hom(V,W)

Θ

f ∗⊗1W f ∗

Θ

This is possible because both V∗ ⊗W and Hom(V,W) are
contragredient in V.
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