

Lecture 12. Induced Characters

Daniel Bump

May 19, 2020

The idea of an induced representation

If G is a finite group and H a subgroup, there is a functor from $\mathbb{C}[H]$ -modules to $\mathbb{C}[G]$ -modules, or equivalently from representations of H to representations of G , called **induction**.

Today we will take a purely character-theoretic approach to this. This **ad hoc** approach, based on a couple of formulas, doesn't give any real insight into the representations, but it **will** give us quick access to the character of the induced representation, and we will find applications.

Frobenius reciprocity

We will make use of the characters of both G and its subgroup H . We will denote by $\langle \cdot, \cdot \rangle_G$ and $\langle \cdot, \cdot \rangle_H$ the L^2 inner products on both these groups. Today we will prove:

Theorem (Frobenius reciprocity)

Let H be a subgroup of G . Let χ be a character of H . Then there is a character χ^G of G such that if ψ is another character of G then

$$\langle \chi^G, \psi \rangle_G = \langle \chi, \psi \rangle_H.$$

Note that on the right-hand side, we are restricting the character ψ of G to the subgroup H to compute the inner product.

Reduction of the problem

Let ψ_1, \dots, ψ_k be the distinct irreducible representations of G . Assuming we have constructed a candidate for the induced character χ^G , a necessary and sufficient condition for

$$\langle \chi^G, \psi \rangle_G = \langle \chi, \psi \rangle_H$$

to be true for all ψ is that it is true for the ψ_i . Indeed, the ψ_i span the space of class functions, and both sides are linear in ψ .

To prove that χ^G exists, we will give an **ad hoc** definition that makes Frobenius reciprocity true for the ψ_i .

Definition of χ^G

Let us define

$$\chi^G = \sum_{i=1}^k m_i \psi_i, \quad m_i = \langle \chi, \psi_i \rangle_H.$$

Note that the m_i are nonnegative integers so this is a character.
Now to check Frobenius reciprocity for $\psi = \psi_j$ we compute

$$\langle \chi^G, \psi_j \rangle_G = \sum_{i=1}^k m_i \langle \psi_i, \psi_j \rangle = m_j = \langle \chi, \psi_j \rangle_H.$$

Thus we have proved Frobenius reciprocity for this χ^G .

A formula for χ^G

We now know that there exists a character χ^G . In order to work with it it will be useful to have a formula for it. To define this, note that χ is defined on H , not all of G . So we define

$$\dot{\chi}(g) = \begin{cases} \chi(g) & \text{if } g \in H, \\ 0 & \text{otherwise.} \end{cases}$$

Proposition

We have

$$\chi^G(x) = \frac{1}{|H|} \sum_{g \in G} \dot{\chi}(gxg^{-1}).$$

Proof

Denote the right hand side as $\tilde{\chi}(g)$. Obviously this is a class function on G . So to show that it equals χ^G , we need only show that both have the same inner product with characters of G . By Frobenius reciprocity, this means that we need to prove

$$\langle \tilde{\chi}, \psi \rangle_G = \langle \chi, \psi \rangle_H.$$

So we calculate:

$$\langle \tilde{\chi}, \psi \rangle = \frac{1}{|G|} \sum_{x \in G} \tilde{\chi}(x) \overline{\psi(x)} = \frac{1}{|G|} \sum_{x \in G} \frac{1}{|H|} \sum_{g \in G} \dot{\chi}(gxg^{-1}) \overline{\psi(x)}.$$

Because ψ is a class function, we may replace $\psi(x)$ with $\psi(gxg^{-1})$. Then we interchange the order of summation to obtain

$$\langle \tilde{\chi}, \psi \rangle = \frac{1}{|H|} \frac{1}{|G|} \sum_{g \in G} \sum_{x \in G} \dot{\chi}(gxg^{-1}) \overline{\psi(gxg^{-1})}.$$

Proof, concluded

Now with g fixed, we make the substitution $x \rightarrow g^{-1}xg$ and this becomes

$$\frac{1}{|H|} \frac{1}{|G|} \sum_{x \in G} \sum_{g \in G} \dot{\chi}(x) \overline{\psi(x)} = \frac{1}{|H|} \sum_{x \in G} \dot{\chi}(x) \overline{\psi(x)}.$$

Now since

$$\dot{\chi}(g) = \begin{cases} \chi(g) & \text{if } g \in H, \\ 0 & \text{otherwise.} \end{cases}$$

we may restrict the summation to H and we have proved

$$\langle \tilde{\chi}, \psi \rangle_G = \langle \chi, \psi \rangle_H.$$

As noted, this implies the advertised formula for the induced character.

Summing over coset representatives

There is a simplification of the formula:

$$\chi^G(x) = \frac{1}{|H|} \sum_{g \in G} \dot{\chi}(gxg^{-1}).$$

Although $\dot{\chi}$ is not a class function for G , it is still true

$$\dot{\chi}(hxh^{-1}) = \dot{\chi}(x).$$

This means that we can group the elements g into cosets Hg . We will denote by $H \backslash G$ the set of such cosets. The summand $\dot{\chi}(gxg^{-1})$ is constant on these cosets. So if we take just one representative from each coset we may drop the factor $|H|$ in the denominator. We obtain the formula

$$\boxed{\chi^G(x) = \sum_{Hg \in H \backslash G} \dot{\chi}(gxg^{-1})}.$$

The degree of the induced representation

The induced character is of course the character of a representation, and we will study the representation directly by other methods. But the character does contain complete information about the representation, since the character determines the representation

Proposition

Let d be the degree (dimension) of the representation is $d[G : H]$.

To prove this, we note that the degree d of the representation with character χ is $d = \chi(1)$. So the degree $\chi^G(1)$ of the induced representation is

$$\sum_{Hg \in H \backslash G} \dot{\chi}(g \cdot 1 \cdot g^{-1}) = |H \backslash G| \chi(1) = [G : H]d.$$

Using induced representations to construct irreducibles

If χ is an irreducible character, the induced character χ^G may or may not be irreducible.

It may be proved that if G is a p -group then every irreducible character is induced from a linear character. For more general groups, Brauer proved that for any finite group, characters induced from linear characters generate the group of virtual characters, and this leads to a strategy for constructing all irreducible characters.

To summarize, linear characters are easy to determine, so a good strategy for constructing representations of the group is to take characters induced from linear characters of various subgroups; this may produce irreducibles, and if it doesn't, the irreducibles may then be found by taking linear combinations.

Example: the dihedral group D_8

Let us do an example. We consider the dihedral group

$$D_8 = \langle t, s \mid t^4 = s^2 = 1, sts^{-1} = t^{-1} \rangle.$$

The commutator subgroup is the center $\langle t^2 \rangle$ of order 2 and the quotient $D_8 / \langle t^2 \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. So we obtain four linear characters.

Conj. Class (size)	1(1)	$t(2)$	$t^2(1)$	$s(2)$	$st(2)$
χ_1	1	1	1	1	1
χ_2	1	1	1	-1	-1
χ_3	1	-1	1	1	-1
χ_4	1	-1	1	-1	1

The dihedral group, continued

There is also a two dimensional irreducible character. Can we construct this two dimensional character as an induced character?

Remembering that induction from H multiplies the degree by $[G : H]$, we are looking for a subgroup of index two. An obvious candidate is the cyclic subgroup $\langle t \rangle$. Let us induce the linear character of this cyclic group of order 4 such that $\chi(t) = i$.

The dihedral group, continued

To use the formula

$$\chi^G(x) = \sum_{Hg \in H \backslash G} \dot{\chi}(gxg^{-1}),$$

we need coset representatives for $H \backslash G$. We take $\{1, s\}$ and the formula

$$\chi^G(x) = \dot{\chi}(x) + \dot{\chi}(sxs^{-1}).$$