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The structure of C[G]

In our last lecture we proved that if d; are the degrees of the
irreducible representations of G then

G| =) _d}.

Our proof made use of the character of the regular
representation and Schur orthogonality.

A different approach to this result is to prove the isomorphism

C[G] = 5 Maty, (C).

The identity |G| = >~ d? then follows by computing the
dimensions of both sides.
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Semisimple rings

The identity
C[G] = €P Mat,,(C)

is a consequence of Wedderburn’s theorem, a structure
theorem for semisimple rings. Dummit and Foote relegate the
proof of Wedderburn’s theorm to the exercises. But a much
better treatment may be found in Lang’s Algebra, in the chapter
called Semisimplicity. | strongly recommend this account.
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Semisimplicity simplified

| will present a simplified discussion that is suitable for group
algebras F[G] where F can be a field of characteristic zero
(such as C).

Definition

A semisimple algebra over the field F is an algebra R that is
finite-dimensional as an F-vector space, such that if M is an
R-module and N a submodule, there exists a complementary
submodule P such that M = N @ P.

For example, a group algebra F[G] is a semisimple algebra if
the characteristic of F is not a prime dividing |G|, by Maschke’s
theorem.



Semisimple rings

Decomposition into simple modules

Let R be an F-algebra. If M is a module over R it is a vector
space over F. We will say it is finite-dimensional if it is
finite-dimensional over F.

Proposition

Let R be a semisimple algebra and let M be a module that is
finite-dimensional. Then M is direct sum of simple modules.

Note: the assumption that M is finite-dimensional is
unnecessary here. See Lang’s Algebra Section XVII.2.
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Proof

To prove this, we may assume that M # 0. Then let N be a
nonzero submodule of smallest dimension. Clearly N has no
proper, nonzero submodules, so it is simple. By assumption,
M = N @& P and by induction on dimension, P is a direct sum of
simple modules. So, therefore is M.

Wedderburn’s theorem implies that a semisimple algebra R is a
direct sum of matrix rings over division algebras over F. If F is
algebraically closed, then any division algebra over F is just F,
so this means that a semisimple algebra over an algebraically
closed field F is just a direct sum of matrix rings over F itself.
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Direct sum of rings

Let us pause to consider a general ring that is a direct sum of
other rings.

(Note: it is actually more correct to this as a direct product but
we will use the term direct sum.)

Let

with componentwise addition and multiplication.
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Peirce Decomposition

The identity element 1 has a decomposition

1= (e, ,en)

where ¢; is the identity element of R;. But we will identify R; with
its image in R and write

l=e+---+e
The ring R; becomes a two-sided ideal in R and
R,‘ = e,-R = Rei = e,-Re,-.

A decomposition associated with a family of idempotents (more
general than this) is sometimes called a Peirce decompostion.

@ Peirce decomposition (Wikipedia), web link


https://en.wikipedia.org/wiki/Peirce_decomposition
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Central orthogonal idempotents

Since the injection R; — R does not map the identity element
e¢; of Rto 1, we do not call R; a subring of R. However it is a
two-sided ideal. The elements e; satisfy

el-zze,-, eiej =0if i #j.

Moreover ¢; is in the center of R. Thus the ¢; are central
idempotents, and we express the fact that e;e; = eje; = 0 by
saying that the idempotents are orthogonal. Conversely:

Proposition

LetR be aring, and let 1 = e; + - - - + e, with central orthogonal
idempotents e;. Then R; = Re; = ¢;R is a 2-sided ideal, and

R=R @ - ®Rp.
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Proof

We check that every element x of R can be uniquely written as
x =Y x; with x; € R;. First, there is such a decomposition since
x=x-1=> x-e; Where x; = xe; € R;. To show the
decomposition is unique, if x = > x; with x; € Re; then we may
use the property

Yo — Xi |fl:j,
771 0 otherwise

to show that x; = xe;.
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A useful vanishing property

Let R be a semisimple algebra.

Proposition

Let M be a simple module and L a simple left ideal. Then either
M=LorLM = 0.

Here LM is the submodule of M consisting of finite sums
Lmy + ...+ Ly, LeLmeM.

To prove this assume LM # 0. Pick m € M such that Lm # 0
and consider the map ¢ : L — M defined by ¢(x) = xm. Itis
easy to see that this is an R-module homomorphism, and by
assumption it is not the zero map. By Schur’s Lemma, it is an
isomorphism.
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Finite number of isomorphism classes

Proposition
R has only a finite number of isomorphism classes of simple
modules.

To prove this, using the semisimplicity of R we may write
R=L & - --®L,

where L; is a simple submodule (left ideal). We may write

1 =51 with]; € L;. Then if M is a simple module, 1 - M # 0 so
Il; - M # 0 for some [;. This implies that M = L;. Now it is clear
that there are at most m classes of simple modules.
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The two-sided ideals R;

Now let My, - - - , M}, be representatives of the distinct simple
modules. We define R; to be the sum of all left ideals of R
isomorphic to M;.

Proposition

R; is a two-sided ideal.

Indeed R; is a sum of left ideals, so it is a left ideal. We must
show that it is closed under right multiplication. It is enough to
show that if L is a left ideal isomorphic to M;, and r € R, then

Lr C R;. There are two cases. If Lr = 0, this is obvious.
Otherwise, the map x — xr is @ homomorphism L — Lr that is
not the zero map, so it is an isomorphism by Schur’'s Lemma.
This means that Lr is a left ideal isomorphic to M; and so

Lr C R;. This proves that R; is a right ideal as well as a left ideal.
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Orthogonality of the R;

Proposition
Ifi # j then R;M; = 0 and R;R; = 0.

This is because if M is a simple module and L a simple left ideal
then either M = L or LM = 0. Now R; is a sum of ideals
isomorphic to M; andM; 2 M;, so R;M; = 0. Also R; is a sum of
ideals to M;, so imples R;R; = 0.
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Introducing the ¢;

Proposition
We may write 1 = e; + - -- +¢; withe; € R;. Ifm € M; then

P
e,-m:{m o

0 ifitj.

To prove this, note that R is a direct sum of simple ideals, each
of which is contained in some R;. SOR=R; + --- + R;. (We
have not yet proved that this sum is direct.) We may therefore
write 1 = ey + - - - + ¢, With ¢; € R; Now e¢;m = 0 if m € M; with
j#isince RM; =0. Thusm=1-m=>)_e;-m=emsince all
but one term is zero. This proves that em = m if i = j.
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The ¢; are orthogonal idempotents

Proposition
If x € R; then

o x ifi=],
YT 0 ifi 4]

In particular, e = e; while e;e; = 0 if i # j.

Indeed, R; is a sum of left ideals isomorphic to M;. We have
proved that left multiplication by e; acts as the identity on M;, so
it acts as the identity on R;. On the other hand, R;R; = 0 if i # j,
S0 ex =0ifi # .



Semisimple rings

The ¢; are orthogonal idempotents

The e; are central orthogonal idempotents and

R,' = eiR = Re,-.

We have

R=R1 @ - DRy

First let us show that the sum R = R; + --- + R;, is direct. We
must show that if x; € R; and x; + ... + x, = 0 then each x; = 0.

We have
0= Z eixj = X;
J

by our last Proposition. This proves that R = P R;.
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Proof (continued)

We have already proved that the ¢; are orthogonal idempotents,
but we need to prove they are central. It is enough to show that
e;x = xe; if x € R;. Both are zero if i # j, so we have only to show
that xe; = x When i =j. We have

x=x-1= E X e = xej

since xe; = 0 when i # j. This proves that ¢; are central
orthogonal idempotents.

The idempotent ¢; serves as identity element in the ideal R;,
which then becomes a ring.
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The R; are rings but not subrings

We have made a lot of progress towards proving Wedderburn’s
theorem. Let us say that a ring is simple if it is semisimple and
has a unique isomorphism class of simple left modules. We
have proved that a semisimple algebra R decomposes

R=R & - DRy
where R; is a two-sided ideal that is itself a ring with unit e;.

We have noted that the ideals R; are rings (with unit ¢;). We do
not consider the injection R; — R to be a ring homomorphism
because it does not take the multiplicative identity element ¢; to
1. However the projection R — R; is a ring homomorphism.
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R; is a simple ring

Proposition
R; is a simple ring.

—

We must show that R; has a unique simple isomorphism class
of simple modules. If M is a simple R;-module, then by means
of the surjection R — R; we may consider M to be a module for
R. If M is simple as an R;-module, it is simple as an R-module,
so M = M; for some j. Moreover e; — ¢; in the projection

R — R;, SO ¢; acts as the identity on M, which tells us that

M = M;. We have proved that R; has a unique class of simple
modules, and it is easy to see that it is semisimple since R is,
and so R is a simple ring.
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Wedderburn’s theorem

Theorem (Wedderburn)

A simple ring is a matrix ring over a division ring.

Of course if R is a simple ring that is a finite-dimensional
algebra over a field F, the division ring is itself a division
algebra. So if we prove this theorem of Wedderburn, we have
proved that every semisimple algebra is a direct sum of matrix
rings over division algebras.

We will prove Wedderburn’s theorem next week.
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Division algebras over algebraically closed fields

Proposition

Moreover if D is a finite-dimensional division algebra over an
algebraically closed field F, then D = F.

Indeed, if x € D then the powers of x are linearly dependent,
proving that x satisfies an algebraic relation over D; hence the F
algebra Flx] is a finite-dimensional field extension of F, but x is
algebraically closed so x € F. Therefore D = F.

So a simple algebra over an algebraically closed field is just a
matrix ring. Note that the unique simple module of Mat,(C) is
just C¢
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Application to representations

Thus Wedderburn’s theorem implies that

h
C[G) = @) Mat,,(C)
i=1

for some d;. The simple modules of C[G] are the same as the
irreducible representations of C, and the d; are their
dimensions. Thus comparing the dimensions, we get another
proof that

h
G| =) d;.
i=1
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