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The structure of C[G]

In our last lecture we proved that if di are the degrees of the
irreducible representations of G then

|G| =
∑

i

d2
i .

Our proof made use of the character of the regular
representation and Schur orthogonality.

A different approach to this result is to prove the isomorphism

C[G] ∼=
⊕

i

Matdi(C).

The identity |G| =
∑

d2
i then follows by computing the

dimensions of both sides.
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Semisimple rings

The identity
C[G] ∼=

⊕
i

Matdi(C)

is a consequence of Wedderburn’s theorem, a structure
theorem for semisimple rings. Dummit and Foote relegate the
proof of Wedderburn’s theorm to the exercises. But a much
better treatment may be found in Lang’s Algebra, in the chapter
called Semisimplicity. I strongly recommend this account.
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Semisimplicity simplified

I will present a simplified discussion that is suitable for group
algebras F[G] where F can be a field of characteristic zero
(such as C).

Definition
A semisimple algebra over the field F is an algebra R that is
finite-dimensional as an F-vector space, such that if M is an
R-module and N a submodule, there exists a complementary
submodule P such that M = N ⊕ P.

For example, a group algebra F[G] is a semisimple algebra if
the characteristic of F is not a prime dividing |G|, by Maschke’s
theorem.
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Decomposition into simple modules

Let R be an F-algebra. If M is a module over R it is a vector
space over F. We will say it is finite-dimensional if it is
finite-dimensional over F.

Proposition
Let R be a semisimple algebra and let M be a module that is
finite-dimensional. Then M is direct sum of simple modules.

Note: the assumption that M is finite-dimensional is
unnecessary here. See Lang’s Algebra Section XVII.2.
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Proof

To prove this, we may assume that M 6= 0. Then let N be a
nonzero submodule of smallest dimension. Clearly N has no
proper, nonzero submodules, so it is simple. By assumption,
M = N ⊕ P and by induction on dimension, P is a direct sum of
simple modules. So, therefore is M.

Wedderburn’s theorem implies that a semisimple algebra R is a
direct sum of matrix rings over division algebras over F. If F is
algebraically closed, then any division algebra over F is just F,
so this means that a semisimple algebra over an algebraically
closed field F is just a direct sum of matrix rings over F itself.
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Direct sum of rings

Let us pause to consider a general ring that is a direct sum of
other rings.

(Note: it is actually more correct to this as a direct product but
we will use the term direct sum.)

Let
R = R1 ⊕ · · · ⊕ Rh

with componentwise addition and multiplication.
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Peirce Decomposition

The identity element 1 has a decomposition

1 = (e1, · · · , eh)

where ei is the identity element of Ri. But we will identify Ri with
its image in R and write

1 = e1 + · · ·+ eh.

The ring Ri becomes a two-sided ideal in R and

Ri = eiR = Rei = eiRei.

A decomposition associated with a family of idempotents (more
general than this) is sometimes called a Peirce decompostion.

Peirce decomposition (Wikipedia), web link

https://en.wikipedia.org/wiki/Peirce_decomposition
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Central orthogonal idempotents

Since the injection Ri −→ R does not map the identity element
ei of R to 1, we do not call Ri a subring of R. However it is a
two-sided ideal. The elements ei satisfy

e2
i = ei, eiej = 0 if i 6= j.

Moreover ei is in the center of R. Thus the ei are central
idempotents, and we express the fact that eiej = ejei = 0 by
saying that the idempotents are orthogonal. Conversely:

Proposition
Let R be a ring, and let 1 = e1 + · · ·+ eh with central orthogonal
idempotents ei. Then Ri = Rei = eiR is a 2-sided ideal, and

R = R1 ⊕ · · · ⊕ Rh.
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Proof

We check that every element x of R can be uniquely written as
x =

∑
xi with xi ∈ Ri. First, there is such a decomposition since

x = x · 1 =
∑

x · ei where xi = xei ∈ Ri. To show the
decomposition is unique, if x =

∑
xi with xi ∈ Rei then we may

use the property

xiej =

{
xi if i = j,
0 otherwise

to show that xi = xei.
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A useful vanishing property

Let R be a semisimple algebra.

Proposition
Let M be a simple module and L a simple left ideal. Then either
M ∼= L or LM = 0.

Here LM is the submodule of M consisting of finite sums

l1m1 + . . .+ lkmk, li ∈ L,mi ∈ M.

To prove this assume LM 6= 0. Pick m ∈ M such that Lm 6= 0
and consider the map φ : L −→ M defined by φ(x) = xm. It is
easy to see that this is an R-module homomorphism, and by
assumption it is not the zero map. By Schur’s Lemma, it is an
isomorphism.
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Finite number of isomorphism classes

Proposition
R has only a finite number of isomorphism classes of simple
modules.

To prove this, using the semisimplicity of R we may write

R = L1 ⊕ · · · ⊕ Lm

where Li is a simple submodule (left ideal). We may write
1 =

∑
li with li ∈ Li. Then if M is a simple module, 1 ·M 6= 0 so

li ·M 6= 0 for some li. This implies that M ∼= Li. Now it is clear
that there are at most m classes of simple modules.
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The two-sided ideals Ri

Now let M1, · · · ,Mh be representatives of the distinct simple
modules. We define Ri to be the sum of all left ideals of R
isomorphic to Mi.

Proposition
Ri is a two-sided ideal.

Indeed Ri is a sum of left ideals, so it is a left ideal. We must
show that it is closed under right multiplication. It is enough to
show that if L is a left ideal isomorphic to Mi, and r ∈ R, then
Lr ⊆ Ri. There are two cases. If Lr = 0, this is obvious.
Otherwise, the map x 7→ xr is a homomorphism L −→ Lr that is
not the zero map, so it is an isomorphism by Schur’s Lemma.
This means that Lr is a left ideal isomorphic to Mi and so
Lr ⊆ Ri. This proves that Ri is a right ideal as well as a left ideal.
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Orthogonality of the Ri

Proposition
If i 6= j then RiMj = 0 and RiRj = 0.

This is because if M is a simple module and L a simple left ideal
then either M ∼= L or LM = 0. Now Ri is a sum of ideals
isomorphic to Mi andMj � Mi, so RiMj = 0. Also Rj is a sum of
ideals to Mj, so imples RiRj = 0.
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Introducing the ei

Proposition
We may write 1 = ei + · · ·+ ej with ei ∈ Ri. If m ∈ Mj then

eim =

{
m if i = j,
0 if i 6= j.

To prove this, note that R is a direct sum of simple ideals, each
of which is contained in some Ri. So R = R1 + · · ·+ Rh. (We
have not yet proved that this sum is direct.) We may therefore
write 1 = e1 + · · ·+ eh with ei ∈ Ri Now eim = 0 if m ∈ Mj with
j 6= i since RiMj = 0. Thus m = 1 · m =

∑
ei · m = ejm since all

but one term is zero. This proves that eim = m if i = j.
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The ei are orthogonal idempotents

Proposition
If x ∈ Rj then

eix =

{
x if i = j,
0 if i 6= j.

In particular, e2
i = ei while eiej = 0 if i 6= j.

Indeed, Ri is a sum of left ideals isomorphic to Mi. We have
proved that left multiplication by ei acts as the identity on Mi, so
it acts as the identity on Ri. On the other hand, RiRj = 0 if i 6= j,
so eix = 0 if i 6= j.
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The ei are central orthogonal idempotents

Proposition
The ei are central orthogonal idempotents and

Ri = eiR = Rei.

We have
R = R1 ⊕ · · · ⊕ Rh.

First let us show that the sum R = R1 + · · ·+ Rh is direct. We
must show that if xi ∈ Ri and x1 + . . .+ xh = 0 then each xi = 0.
We have

0 =
∑

j

eixj = xi

by our last Proposition. This proves that R =
⊕

Ri.
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Proof (continued)

We have already proved that the ei are orthogonal idempotents,
but we need to prove they are central. It is enough to show that
eix = xei if x ∈ Rj. Both are zero if i 6= j, so we have only to show
that xei = x when i = j. We have

x = x · 1 =
∑

x · ei = xej

since xei = 0 when i 6= j. This proves that ei are central
orthogonal idempotents.

The idempotent ei serves as identity element in the ideal Ri,
which then becomes a ring.
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The Ri are rings but not subrings

We have made a lot of progress towards proving Wedderburn’s
theorem. Let us say that a ring is simple if it is semisimple and
has a unique isomorphism class of simple left modules. We
have proved that a semisimple algebra R decomposes

R = R1 ⊕ · · · ⊕ Rh

where Ri is a two-sided ideal that is itself a ring with unit ei.

We have noted that the ideals Ri are rings (with unit ei). We do
not consider the injection Ri −→ R to be a ring homomorphism
because it does not take the multiplicative identity element ei to
1. However the projection R −→ Ri is a ring homomorphism.
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Ri is a simple ring

Proposition
Ri is a simple ring.

We must show that Ri has a unique simple isomorphism class
of simple modules. If M is a simple Ri-module, then by means
of the surjection R −→ Ri we may consider M to be a module for
R. If M is simple as an Ri-module, it is simple as an R-module,
so M ∼= Mj for some j. Moreover ei −→ ei in the projection
R −→ Ri, so ei acts as the identity on M, which tells us that
M ∼= Mj. We have proved that Ri has a unique class of simple
modules, and it is easy to see that it is semisimple since R is,
and so R is a simple ring.
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Wedderburn’s theorem

Theorem (Wedderburn)
A simple ring is a matrix ring over a division ring.

Of course if R is a simple ring that is a finite-dimensional
algebra over a field F, the division ring is itself a division
algebra. So if we prove this theorem of Wedderburn, we have
proved that every semisimple algebra is a direct sum of matrix
rings over division algebras.

We will prove Wedderburn’s theorem next week.
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Division algebras over algebraically closed fields

Proposition
Moreover if D is a finite-dimensional division algebra over an
algebraically closed field F, then D = F.

Indeed, if x ∈ D then the powers of x are linearly dependent,
proving that x satisfies an algebraic relation over D; hence the F
algebra F[x] is a finite-dimensional field extension of F, but x is
algebraically closed so x ∈ F. Therefore D = F.
So a simple algebra over an algebraically closed field is just a
matrix ring. Note that the unique simple module of Matd(C) is
just Cd
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Application to representations

Thus Wedderburn’s theorem implies that

C[G] =

h⊕
i=1

Matdi(C)

for some di. The simple modules of C[G] are the same as the
irreducible representations of C, and the di are their
dimensions. Thus comparing the dimensions, we get another
proof that

|G| =
h∑

i=1

d2
i .
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