
Math 121 Homework 8 Solutions

• Section 14.6 # 1, 2, 3, 4, 40bc, 44
• Optional: Section 14.6 # 49

Problem 1 in 14.6. Show that a cubic with a multiple root has a linear factor. That is, if
f ∈ F [x] is cubic and has a multiple root in an extension field, then it has a linear factor in
F [x]. Assume that the characteristic is not 3. Is the same true for quartics?

Solution. The key insight is that it does not matter whether we take the greatest common
divisor of f and f ′ in F [x] or in E[x]. We will digress to discuss this point.

We remind the reader that although the notion of greatest common divisor is useful for
unique factorization domains, it is particularly simple over principal ideal domains.

If R is a principal ideal domain and f, g ∈ R, then the greatest common divisor of f and
g may be characterized as a generator δ of the ideal I = Rf +Rg. It has the property that
δ divides both f and g, and that δ can be written as δ = mf + ng, m,n ∈ R.

Lemma 1. Let R ⊆ S be principal ideal domains and let f, g ∈ R. Let δ be the greatest
common divisor of f and g as an element of R. Then δ is also the greatest common divisor
of f and g as an element of S.

Proof. We have δ dividing f and g (in R) and δ = mf+ng for m,n ∈ R. These facts remain
true in S, so δ is the greatest common divisor of f and g as an element of S.

Now we may finish the proof. Let h be the greatest common divisor of f and f ′ in F [x].
Because f has a multiple root, the degree of h is at least 1. But it is at most 2 since f ′ has
degree 2. Therefore h is a polynomial in F [x] of degree 1 or 2 that divides f . Thus either h
or f/h is linear, proving that f has a linear factor.

We are asked whether the statement remains true when f is quartic. The answer is no.
For example, we could take f(x) = g(x)2, where g(x) is an irreducible quadratic. This has
two multiple roots in the splitting field, namely the roots of g(x). But f(x) has no linear
factors.

Problem 2 in 14.6. Determine the Galois groups of the following polynomials:

(a) x3 − x2 − 4

(b) x3 − 2x+ 4

(c) x3 − x+ 1

(d) x3 + x2 − 2x− 1.
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Solution. We recall that the discriminant of f(x) = x3 + bx+ c is −(27c2 + 4b3).

(a) This polynomial is reducible, since x = 2 is a root. We factor it as (x− 2)(x2 + x + 2).
The quadratic here is irreducible over Q since the discriminant −7 is not a square. So in
this case the Galois group is S2.

(b): This one is also reducible since x = −2 is a root. We factor it as (x + 2)(x2 − 2x + 2).
The quadratic has discriminant −4, which is not a square (since it is negative). The Galois
group is S2, generated by complex conjugation.

(c): If the polynomial x3−x+1 were reducible over Q it would be reducible over Z by Gauss’
Lemma, hence reducible over Fp for every prime p. But it is irreducible over F2 where it is
cubic but has no root. So it is irreducible. The discriminant is −23. This is negative, so the
Galois group is S3.

(d): You may remember this as the irreducible polynomial satisfied by ζ7 + ζ−17 = 2 cos
(
2π
7

)
.

So it generates the unique cubic subfield inside Q(ζ), which is abelian over Q. So the Galois
group is cyclic, Z3. Alternatively, let us compute the discriminant. Making the change of
variables x 7→ x− 1

3
gives the polynomial x3 − 7

3
x− 7

27
so the discriminant is

−27

(
− 7

27

)2

− 4

(
−7

3

)3

= 49.

Since 49 = 72 this is a square over Q, so the Galois group is Z3. If you know some algebraic
number theory, the 7 will tell you to look for it inside the cyclotomic field of 7-th roots of
unity.

Problem 3 in 14.6. Prove that for any a, b ∈ Fpn if x3+ax+b is irreducible then −4a3−27b2

is a square in Fpn .

Solution. We will write q = pn. Let α, β, γ be the roots of f(x) = x3 + ax+ b. Because f is
assumed to be irreducible, these lie in the unique cubic extension field E = Fq3 . Therefore
r = (α− β)(α− β)(β− γ) ∈ E. The square r2 is the discriminant D(f), which is in F = Fq.
Since r2 ∈ F , r lies in the unique quadratic extension of F . But this field is not contained in
E. Both fields Fq2 and Fq3 are contained in Fq6 , so we can take their intersection, but this
intersection is just Fq. Since r ∈ Fq3 ∩ Fq2 = Fq, we see that D(f) = r2 is a square in Fq.

Problem 4 in 14.6. Determine the Galois group of x4 − 25 over Q.

Solution. This polynomial is reducible over Q:

x4 − 25 = (x2 − 5)(x3 + 5).

So the roots are ±
√

5 and ±
√

5i. Clearly the splitting field is Q
(√

5, i
)
. It has degree 4 over

Q and every automorphism sends
√

5 to ±
√

5 and i to ±i, so the Galois group is Z2 × Z2.

Problem 40bc. Express the following polynomials as polynomials in the elementary sym-
metric functions. In three variables these are

e1 = x1 + x2 + x3, e2 = x1x2 + x1x3 + x2x3, e3 = x1x2x3.

Note: The book tells you to use a particular procedure, but I don’t require you to do this.
Also, the book uses the notations si for the elementary symmetric functions, but the notation
ei is standard in the mathematical literature since at least the 1980’s.
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(b) x21 + x22 + x23.

(c) x21x
2
2 + x21x

2
3 + x22x

2
3.

Solution. (b) We have

e21 = x21 + x22 + x23 + 2x1x2 + 2x1x3 + 2x2x3 = x21 + x22 + x23 + 2e2

so x21 + x22 + x23 = e21 − 2e2.
(c) We have

e22 = x21x
2
2 + x21x

2
3 + x22x

2
3 + 2x21x2x3 + 2x22x1x3 + 2x23x1x2 = x21x

2
2 + x21x

2
3 + x22x

2
3 + 2e1e3

so
x21x

2
2 + x21x

2
3 + x22x

2
3 = e22 − 2e1e3.

Problem 44 in 14.6. Let α1, α2, α3, α4 be the roots of a quartic polynomial f(x) over Q.
Show that the quantities α1α2 + α3α4, α1α3 + α2α4 and α1α4 + α2α3 are permuted by the
Galois group of f(x). Conclude that these elements are the roots of a cubic polynomial with
coefficients in Q (sometimes called the cubic resolvent of f(x)).

Solution. If σ ∈ Gal(E/Q), where E is the splitting field of f , then σ(α1), σ(α2), σ(α3)
and σ(α4) are α1, α2, α3, α4 in some order, and it is therefore clear that σ(α1α2 + α2α3) =
σ(α1)σ(α2)+σ(α3)σ(α4) is one of β1 = α1α2+α3α4, β2 = α1α3+α2α4 and β3 = α1α4+α2α3,
and so forth. Since σ permutes β1, β2 and β3, the symmetric functions in β1, β2 and β3 are
invariant under σ. In particular, σ fixes a, b, c where

x3 + ax2 + bx+ c = (x− β1)(x− β2)(x− β3), (1)

so
a = −(β1 + β2 + β3), b = β1β2 + β2β3 + β3β1, c = β1β2β3.

Thus a, b, c are in Q, and the cubic resolvent (1) is in Q[x].

Problem 49 in 14.6 (Optional: this will not be graded). Prove that the Galois group
over Q of x6− 4x3 + 1 is isomorphic to the dihedral group of order 12. (Hint: Observe that
the two real roots are inverses of each other.)

Solution. We will prove that Gal(E/Q) ∼= S3 × Z2, where E is the splitting field of
f(x) = x6 − 4x3 + 1. Then we will point out that D12

∼= S3 × Z2.
If α is a root of this, then α3 is a root of x2 − 4x + 1, that is, α3 = 2 ±

√
3. Hence the

splitting field E contains
√

3. Over the subfield Q
(√

3
)
, we may factor the polynomial

x6 − 4x3 + 1 =
(
x3 − 2−

√
3
)(

x3 − 2 +
√

3
)
.

Note that 2 +
√

3 and 2 −
√

3 are inverses, so α−1 is a root of x3 − 2 +
√

3. Therefore we
may completely factor the polynomial

x6 − 4x3 + 1 = (x− α)(x− ρα)(x− ρ2α)(x− α−1)(x− (ρα)−1)(x− (ρ2α)−1).
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It is clear that the splitting field E = Q(α, ρ) where ρ = e2πi/3, and since Q(ρ) = Q
(√
−3

)
,

E contains the biquadratic field Q
(√

3,
√
−3

)
.

Since the polynomial x3−2−
√

3 has imaginary roots, its discriminant is negative, and so
it is irreducible over Q

(√
3
)
⊆ R, with Galois group S3. This proves that Gal

(
E/Q

(√
3
))

contains Galois automorphisms corresponding to all permutations of the roots α, ρα, ρ2α of
x3−2−

√
3. Given such a permutation, the effect on the other roots α−1, (ρα)−1 and (ρ2α)−1

is determined. So Gal
(
E/Q

(√
3
))

is a subgroup isomorphic to S3.

To obtain other elements of Gal(E/Q), let us extend the automorphism
√

3 −→ −
√

3
of Gal

(
Q
(√

3
)
/Q

)
to an automorphism θ of Gal(E/Q). We have some flexibility in this

extension, since we may compose with an arbitrary element of Gal
(
E/Q

(√
3
))

, and so we
may arrange that θ(α) = α−1, θ(ρα) = (ρα)−1 and θ(ρ2α) = (ρ2α)−1. In other words,
θ(γ) = γ−1 for every root γ of f .

Now let σ ∈ Gal
(
E/Q

(√
3
))

. We show that σθ = θσ. Indeed, if γ is one the roots of
f then σθ(γ) = σ(γ−1) = σ(γ)−1 = θσ(γ). We see that θ2 = 1 and that it commutes with
Gal

(
E/Q

(√
3
)) ∼= S3. Since Gal

(
E/Q

(√
3
))

is obviously the union of S3 and the coset

θS3, it is clear that Gal
(
E/Q

(√
3
)) ∼= S3 × Z2.

We have found the Galois group, but it remains to be shown that this group is dihedral.
The group S3 is already dihedral of order 6, so let σ be a 3-cycle and τ a transposition. In
terms of generators and relations

S3 = 〈σ, τ |σ3 = τ 2 = 1, τστ−1 = σ−1〉,

S3 × Z2 = 〈σ, τ, θ|σ3 = τ 2 = θ2 = 1, τστ−1 = σ−1, σθ = θσ, τθ = θτ〉.

Now let ρ = σθ. Then ρ has order 6, and σ = ρ4, θ = ρ3 are both in the cyclic group 〈ρ〉. In
other words 〈ρ〉 ∼= Z3 × Z2

∼= 〈σ, θ〉. We also have τρτ−1 = ρ−1, so

〈σ, τ, θ|σ3 = τ 2 = θ2 = 1, τστ−1 = σ−1, σθ = θσ, τθ = θτ〉 = 〈ρ, τ |ρ6 = τ 2 = 1, τρτ−1 = ρ−1〉.

This proves that S3 × Z2
∼= D12.
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