Problem 14.2 # 17. Let K/F be any finite extension and let $\alpha \in K$. Let L be a Galois extension of F containing K and let $H \leq \text{Gal}(L/F)$ be the subgroup corresponding to K. Define the norm of α from K to F to be

$$N_{K/F}(\alpha) = \prod_{\sigma} \sigma(\alpha),$$

where the product is taken over all embeddings of K into an algebraic closure of F (so over a set of coset representatives for H in $\text{Gal}(L/F)$ by the Fundamental Theorem of Galois Theory.) In particular if K/F is Galois this is $\prod_{\sigma \in \text{Gal}(K/F)} \sigma(\alpha)$.

(a) Prove that $N_{K/F}(\alpha) \in F$.

(b) Prove that $N_{K/F}(\alpha\beta) = N_{K/F}(\alpha)N_{K/F}(\beta)$, so the norm is a multiplicative map from K to F.

(c) Let $K = F\left(\sqrt{D}\right)$ be a quadratic extension of K. Show that

$$N_{K/F}\left(a + b\sqrt{D}\right) = a^2 - Db^2.$$

(d) Let $m_{\alpha}(x) = x^d + a_{d-1}x^{d-1} + \ldots + a_1x + a_0$ be the minimal polynomial of $\alpha \in K$ over F. Let $n = [K : F]$. Prove that $d|n$, that there are d distinct Galois conjugates of α which are all repeated n/d times in the product above, and conclude that $N_{K/F}(\alpha) = (-1)^n a_0^{n/d}$.

Solution. We review some points that are made in the proof of Theorem 14 (The Fundamental Theorem of Galois Theory), page 575-6.

We may take the algebraic closure \overline{F} of F to contain L. We will denote $G = \text{Gal}(L/K)$.

Lemma 1. Let $G = \text{Gal}(L/F)$ and $H = \text{Gal}(L/K) \subseteq G$. Then every embedding $\sigma : K \to \overline{F}$ extends to an automorphism $\sigma_1 \in G$, and $\sigma_1, \sigma_2 \in G$
have the same restriction to \(K \) if and only if they represent the same coset \(\sigma_1H = \sigma_2H \). Therefore the distinct embeddings of \(K \) into \(\overline{F} \) over \(F \) are in bijection with the cosets \(\sigma H \).

Proof. Since \(L \) is a splitting field, every embedding \(\sigma : K \rightarrow \overline{F} \) has image in \(L \), and extends to an automorphism of \(L \). If \(\sigma_1 \) and \(\sigma_2 \in \text{Gal}(L/K) \) are two such extensions, then they are the same if \(\sigma_1(x) = \sigma_2(x) \) for all \(x \in K \), in other words, \(\sigma_1^{-1}\sigma_2(x) = x \) which means \(\sigma_1^{-1}\sigma \in \text{Gal}(L/K) = H \). This is equivalent to \(\sigma_1H = \sigma_2H \).

So we can write

\[
N_{K/F}(\alpha) = \sum_{\text{cosets } \sigma H \atop \sigma \in G} \sigma(\alpha).
\]

(1)

Now let us show \(N_{K/F}(\alpha) \in F \). Since \(F \) is the fixed field of \(G \), it is sufficient to show that \(\tau N_{K/F}(\alpha) = N_{K/F}(\alpha) \) for \(\tau \in G \). This is because \(\sigma H \rightarrow \tau \sigma H \) is a permutation of the cosets and so

\[
N_{K/F}(\alpha) = \sum_{\text{cosets } \sigma H \atop \sigma \in G} \sigma(\alpha) = \sum_{\text{cosets } \tau \sigma H \atop \sigma \in G} \tau \sigma(\alpha) = \tau \left(\sum_{\text{cosets } \sigma H \atop \sigma \in G} \sigma(\alpha) \right) = \tau N_{K/F}(\alpha).
\]

This proves (a).

As for (b), \(\sigma(\alpha \beta) = \sigma(\alpha)\sigma(\beta) \) and taking the product over all embeddings \(\sigma \) of \(K \) into \(L \) over \(F \) gives \(N_{K/F}(\alpha \beta) = N_{K/F}(\alpha)N_{K/F}(\beta) \).

For (c), the assumption that \(F \left(\sqrt{D} \right) \) is a quadratic extension of \(K \) implies that the polynomial \(x^2 - D \) is irreducible over \(F \). Its roots are \(\sqrt{D} \) and \(-\sqrt{D} \), so \(N_{K/F}(\alpha + b\sqrt{D}) = (a + b\sqrt{D})(a - b\sqrt{D}) = a^2 - Db^2 \).

Before we prove (d), we will prove another important property of the norm.

Proposition 2. Let \(E \supset K \supset F \) and let \(\alpha \in E \). Then \(N_{E/F}(\alpha) = N_{K/F}(N_{E/K}(\alpha)) \).

This property is sometimes called the transitivity of the norm map.
Proof. We may choose the Galois extension L of F in the definition of the norm so that it contains both K and E. Let $H = \text{Gal}(L/K)$ as before, and let $M = \text{Gal}(L/E)$ so $M \subseteq H$.

Now we can choose coset representatives for M in G as follows. First, let $\sigma_1, \cdots, \sigma_k$ be left coset representatives for $H = \text{Gal}(L/K)$ in $G = \text{Gal}(L/F)$. This means

$$G = \bigcup_i \sigma_i H \quad \text{(disjoint)}.$$

Similarly, let τ_1, \cdots, τ_l be left coset representatives for M in H, so

$$H = \bigcup_j \tau_j M \quad \text{(disjoint)}.$$

Then

$$G = \bigcup_i \sigma_i H = \bigcup_{i,j} \sigma_i \tau_j M,$$

so the $\sigma_i \tau_j$ are a set of coset representatives for M in G. This means that

$$N_{E/F}(\alpha) = \sum_{i,j} \sigma_i \tau_j(\alpha) = \sum_i \sigma_i \left(\sum_j \tau_j \alpha \right) = \sum_i \sigma_i (N_{E/K}(\alpha)) = N_{K/F}(N_{E/K}(\alpha)).$$

Now let us prove (d). We have inclusions $K \supseteq F(\alpha) \supseteq F$. Let $[F(\alpha) : F] = d$ so $[K : F(\alpha)] = n/d$. By the transitivity of the norm, $N_{K/F}(\alpha) = N_{F(\alpha)/F} N_{K/F(\alpha)}(\alpha)$. Since $\alpha \in F(\alpha)$, $\tau(\alpha) = \alpha$ for every embedding of K into L over $F(\alpha)$, and there are n/d such embeddings, so

$$N_{K/F(\alpha)}(\alpha) = \prod_{\tau} \tau(\alpha) = \alpha^{n/d}.$$

Now let us compute $N_{F(\alpha)/F}(\alpha)$. This is the product of the conjugates $\sigma(\alpha)$ of α. These are the distinct roots of the minimal polynomial

$$\prod_{i=1}^{d} (x - \sigma_i \alpha).$$
(The roots of this polynomial are all distinct since \(L/F \) is Galois and therefore separable, and so any intermediate extension such as \(F(\alpha)/F \) is separable.) The constant term \(a_0 \) of this polynomial is then \((-1)^d \prod \sigma_i(\alpha) = (-1)^d N_{F(\alpha)/F}(\alpha)\). Therefore

\[
N_{K/F}(\alpha) = N_{F(\alpha)/F} N_{K/F(\alpha)}(\alpha) = N_{F(\alpha)/F}(\alpha^{n/d}) = (N_{F(\alpha)/F}(\alpha))^{n/d} = ((-1)^d a_0)^{n/d} = (-1)^n a_0^{n/d}.
\]

Problem 14.2 #18. With notation as in the previous problem, define the trace of \(\alpha \) from \(K \) to \(F \) to be

\[
\text{Tr}_{K/F}(\alpha) = \sum_{\sigma} \sigma(\alpha),
\]

a sum of Galois conjugates of \(\alpha \).

(a) Prove that \(\text{Tr}_{K/F}(\alpha) \in F \).

(b) Prove that \(\text{Tr}_{K/F}(\alpha + \beta) = \text{Tr}_{K/F}(\alpha) + \text{Tr}_{K/F}(\beta) \), so that the trace is an additive map from \(K \) to \(F \).

(c) Let \(K = F(\sqrt{D}) \) be a quadratic extension of \(K \). Show that \(\text{Tr}_{K/F}(a + b\sqrt{D}) = 2a \).

(d) Let \(m_\alpha(x) \) be as in the previous problem. Prove that \(\text{Tr}_{K/F}(\alpha) = -\frac{n}{d} a_{d-1} \).

Solution: This is so similar to the previous problem that we won’t write out solutions to (a) and (b). For (c), as in the previous problem the conjugates of \(a + b\sqrt{D} \) over \(F \) are \(a + b\sqrt{D} \) and \(a - b\sqrt{D} \), so the trace is the sum \(2a \) of these. For (d), this is also similar to the previous problem. We may use the transitivity property of the trace:

Proposition 3. Let \(E \supset K \supset F \) and let \(\alpha \in E \). Then \(\text{Tr}_{E/F}(\alpha) = \text{Tr}_{K/F}(\text{Tr}_{E/K}(\alpha)) \).

Problem 14.2 #21. Use the linear independence of characters to show that for any Galois extension \(K \) of \(F \) there is an element \(\alpha \in K \) with \(\text{Tr}_{K/F}(\alpha) \neq 0 \).

Solution: The linear independence of characters is Theorem 7 on page 569. It is due to Artin. Since \(K/F \) is Galois, then

\[
\text{Tr}_{K/F}(\alpha) = \sum_{\chi \in \text{Gal}(K/F)} \chi(\alpha).
\]

If this is always zero, then \(\sum \chi = 0 \), contradicting Theorem 7 with all \(a_i = 1 \).
Problem 14.2 #22. Suppose \(K/F \) is a Galois extension of \(F \) and let \(\sigma \) be an element of \(\text{Gal}(K/F) \).

(a) Suppose that \(\alpha \in K \) is of the form \(\alpha = \frac{\beta}{\sigma \beta} \) for some nonzero \(\beta \in K \). Prove that \(N_{K/F}(\alpha) = 1 \).

(b) Suppose that \(\alpha \in K \) is of the form \(\alpha = \beta - \sigma \beta \) for some \(\beta \in K \). Prove that \(\text{Tr}_{K/F}(\alpha) = 0 \).

This problem sets up Hilbert’s Theorem 90 (Exercise 23) which we will be discussing later.

Solution: Since \(K/F \) is Galois,

\[
N(\beta) = \prod_{\tau \in \text{Gal}(K/F)} \tau(\beta), \quad N(\sigma \beta) = \prod_{\tau \in \text{Gal}(K/F)} \tau \sigma(\beta),
\]

But \(\tau \mapsto \tau \sigma \) just permutes the elements of \(\text{Gal}(K/F) \). Therefore \(N(\beta) = N(\sigma(\beta)) \). Thus \(N(\beta/\sigma \beta) = N(\beta)/N(\sigma \beta) = 1 \). Part (b) is similar.

Problem 14.3 #9. Let \(q = p^m \) be a power of the prime \(p \) and let \(\mathbb{F}_q = \mathbb{F}_{p^m} \) be the finite field with \(q \) elements. Let \(\sigma_q = \sigma_p^m \) be the \(m \)-th power of the Frobenius automorphism \(\sigma_p \), called the \(q \)-Frobenius automorphism.

(a) Prove that \(\sigma_q \) fixes \(\mathbb{F}_q \).

(b) Prove that every finite extension of \(\mathbb{F}_q \) of degree \(n \) is the splitting field of \(x^{p^n} - x \) over \(\mathbb{F}_q \), and hence there is a unique such extension.

(c) Prove that every finite extension of \(\mathbb{F}_q \) of degree \(n \) is cyclic with \(\sigma_q \) as a generator.

(d) Prove that the subfields of the unique extension of \(\mathbb{F}_q \) of degree \(n \) are in bijection with the divisors \(d \) of \(n \).

Solution. We may interpret \(\sigma_q \) as an automorphism of any field containing \(\mathbb{F}_p \), in particular of \(\mathbb{F}_q \). But as an automorphism of \(\mathbb{F}_q \), it is trivial, and this is the content of (a). To see this,

Problem 14.3 #10. Prove that \(n \) divides \(\varphi(p^n - 1) \). [Hint: observe that \(\varphi(p^n - 1) \) is the order of the group of automorphisms of a cyclic group of order \(p^n - 1 \).]

Solution. By Proposition 16 on page 135 of Dummit and Foote, the group of automorphisms of the cyclic group \(\mathbb{Z}_m \) of order \(m \) is \((\mathbb{Z}/m\mathbb{Z})^\times \), which has order \(\phi(m) \). We apply this with \(m = p^n - 1 \). The group \(\mathbb{F}_{p^n}^\times \) is cyclic of order \(p^n - 1 \) so \(\text{Aut}(\mathbb{F}_{p^n}^\times) \) has order \(\phi(p^n - 1) \). Now we may exhibit an
automorphism of order exactly \(n \), namely the Frobenius map \(x \mapsto x^p \). By Lagrange’s theorem, every element of \(\text{Aut}(\mathbb{F}_p^*) \) must have order dividing \(|\text{Aut}(\mathbb{F}_p^*)| \) and so \(n|p^n - 1 \).

Problem 14.5 #3. Determine the quadratic equation satisfied by the period \(\alpha = \zeta_5 + \zeta_5^{-1} \) of the fifth root of unity \(\zeta_5 \). Determine the quadratic equation satisfied by \(\zeta_5 \) over \(\mathbb{Q}(\alpha) \) and use this to explicitly solve for the fifth root of unity.

Solution. Let \(\sigma \in \text{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q}) \). Then \(\sigma(\zeta_5) = \zeta_5^a \) where \(a \) can be 1, 2, –1 or –2. So \(\sigma(\zeta_5) = \zeta_5^a + \zeta_5^{-a} \cdot \frac{\alpha \pm \sqrt{\alpha^2 - 4}}{2} \). This means that the conjugates of \(\alpha \) are \(\alpha = \zeta_5 + \zeta_5^{-1} \) and \(\beta = \zeta_5^2 + \zeta_5^{-2} \). Now

\[
1 + \alpha + \beta = 1 + \zeta_5 + \zeta_5^{-1} + \zeta_5^2 + \zeta_5^{-2} = 0.
\]

Also

\[
\alpha \beta = (\zeta_5 + \zeta_5^{-1})(\zeta_5^2 + \zeta_5^{-2}) = \zeta_5^3 + \zeta_5^{-1} + \zeta_5 + \zeta_5^{-3} = -1.
\]

Since \(\alpha + b = \alpha \beta = -1 \) we have

\[
(x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha \beta = x^2 + x - 1.
\]

The \(f(x) = x^2 + x - 1 \) is the quadratic equation satisfied by \(\alpha, \beta \) and so \(\alpha, \beta \) are

\[
\frac{-1 \pm \sqrt{5}}{2}.
\]

With \(\zeta_5 = e^{2\pi i/5} \) we have \(\alpha = 2 \cos \left(\frac{2\pi}{5} \right) > 0 \) since \(0 < \frac{2\pi}{5} < \frac{\pi}{2} \), while \(\beta = 2 \cos \left(\frac{4\pi}{5} \right) < 0 \). So

\[
\alpha = \frac{\sqrt{5} - 1}{2}, \quad \beta = -\frac{\sqrt{5} + 1}{2}.
\]

Now we are asked to find the quadratic equation satisfied by \(\zeta = \zeta_5 \) over \(\mathbb{Q}(\alpha) \). Since \(\alpha \) is real, complex conjugation \(\sigma_{-1} \in \text{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q}(\alpha)) \). Thus the conjugates of \(\zeta \) over \(\mathbb{Q}(\alpha) \) are \(\zeta \) and \(\zeta^{-1} \), and the irreducible polynomial they satisfy is

\[
(x - \zeta)(x - \zeta^{-1}) = x^2 - \alpha x + 1.
\]

Using the quadratic equation again,

\[
\zeta = \frac{\alpha \pm \sqrt{\alpha^2 - 4}}{2}.
\]
Here $\alpha^2 - 4 < 0$ so if we interpret the square root as $(\sqrt{4 - \alpha^2}) i$ then we want the positive sign because ζ has positive imaginary part $\sin\left(\frac{2\pi}{5}\right)$. Thus

$$\zeta = \frac{\alpha + \sqrt{\alpha^2 - 4}}{2}.$$

Problem 14.5 #4. Let $\sigma_a \in \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ denote the automorphism of the cyclotomic field of n-th roots of unity such that $\sigma_a(\zeta_n) = \zeta_n^a$. Show that $\sigma_a(\zeta) = \zeta^a$ for every n-th root of unity ζ.

Solution. For some m we have $\zeta = \zeta_n^m$. Therefore $\sigma_a(\zeta) = \sigma_a(\zeta_n)^m = \zeta_n^{am} = (\zeta_n^m)^a = \zeta^a$.