Math 121 Homework 6 Solutions

Problem 14.2 # 17. Let K/F be any finite extension and let $\alpha \in K$. Let L be a Galois extension of F containing K and let $H \leq \text{Gal}(L/F)$ be the subgroup corresponding to K. Define the norm of α from K to F to be

$$N_{K/F}(\alpha) = \prod_{\sigma} \sigma(\alpha),$$

where the product is taken over all embeddings of K into an algebraic closure of F (so over a set of coset representatives for H in $\text{Gal}(L/F)$ by the Fundamental Theorem of Galois Theory.) In particular if K/F is Galois this is $\prod_{\sigma \in \text{Gal}(K/F)} \sigma(\alpha)$.

(a) Prove that $N_{K/F}(\alpha) \in F$.

(b) Prove that $N_{K/F}(\alpha \beta) = N_{K/F}(\alpha)N_{K/F}(\beta)$, so the norm is a multiplicative map from K to F.

(c) Let $K = F\left(\sqrt{D}\right)$ be a quadratic extension of K. Show that

$$N_{K/F}\left(a + b\sqrt{D}\right) = a^2 - Db^2.$$

(d) Let $m_{\alpha}(x) = x^d + a_{d-1}x^{d-1} + \ldots + a_1x + a_0$ be the minimal polynomial of $\alpha \in K$ over F. Let $n = [K : F]$. Prove that $d|n$, that there are d distinct Galois conjugates of α which are all repeated n/d times in the product above, and conclude that $N_{K/F}(\alpha) = (-1)^n a_0^{n/d}$.

Solution. We review some points that are made in the proof of Theorem 14 (The Fundamental Theorem of Galois Theory), page 575-6.

We may take the algebraic closure \overline{F} of F to contain L. We will denote $G = \text{Gal}(L/K)$.

Lemma 1. Let $G = \text{Gal}(L/F)$ and $H = \text{Gal}(L/K) \subseteq G$. Then every embedding $\sigma : K \rightarrow \overline{F}$ extends to an automorphism $\sigma_1 \in G$, and $\sigma_1, \sigma_2 \in G$
have the same restriction to K if and only if they represent the same coset $\sigma_1 H = \sigma_2 H$. Therefore the distinct embeddings of K into \overline{F} over F are in bijection with the cosets σH.

Proof. Since L is a splitting field, every embedding $\sigma : K \rightarrow \overline{F}$ has image in L, and extends to an automorphism of L. If σ_1 and $\sigma_2 \in \text{Gal}(L/K)$ are two such extensions, then they are the same if $\sigma_1(x) = \sigma_2(x)$ for all $x \in K$, in other words, $\sigma_1^{-1}\sigma_2(x) = x$ which means $\sigma_1^{-1}\sigma \in \text{Gal}(L/K) = H$. This is equivalent to $\sigma_1 H = \sigma_2 H$. \qed

So we can write

$$N_{K/F}(\alpha) = \sum_{\text{cosets } \sigma H \atop \sigma \in G} \sigma(\alpha).$$

(1)

Now let us show $N_{K/F}(\alpha) \in F$. Since F is the fixed field of G, it is sufficient to show that $\tau N_{K/F}(\alpha) = N_{K/F}(\alpha)$ for $\tau \in G$. This is because $\sigma H \rightarrow \tau \sigma H$ is a permutation of the cosets and so

$$N_{K/F}(\alpha) = \sum_{\text{cosets } \sigma H \atop \sigma \in G} \sigma(\alpha) = \sum_{\text{cosets } \tau \sigma H \atop \sigma \in G} \tau \sigma(\alpha) = \tau \left(\sum_{\text{cosets } \sigma H \atop \sigma \in G} \sigma(\alpha) \right) = \tau N_{K/F}(\alpha).$$

This proves (a).

As for (b), $\sigma(\alpha\beta) = \sigma(\alpha)\sigma(\beta)$ and taking the product over all embeddings σ of K into L over F gives $N_{K/F}(\alpha\beta) = N_{K/F}(\alpha)N_{K/F}(\beta)$.

For (c), the assumption that $F \left(\sqrt{D} \right)$ is a quadratic extension of K implies that the polynomial $x^2 - D$ is irreducible over F. Its roots are \sqrt{D} and $-\sqrt{D}$, so $N_{K/F} \left(\alpha + b\sqrt{D} \right) = (a + b\sqrt{D})(a - b\sqrt{D}) = a^2 - D\bar{b}^2$.

Before we prove (d), we will prove another important property of the norm.

Proposition 2. Let $E \supset K \supset F$ and let $\alpha \in E$. Then $N_{E/F}(\alpha) = N_{K/F}(N_{E/K}(\alpha))$.

This property is sometimes called the *transitivity of the norm map*.
Proof. We may choose the Galois extension L of F in the definition of the norm so that it contains both K and E. Let $H = \text{Gal}(L/K)$ as before, and let $M = \text{Gal}(L/E)$ so $M \subseteq H$.

Now we can choose coset representatives for M in G as follows. First, let $\sigma_1, \cdots, \sigma_k$ be left coset representatives for $H = \text{Gal}(L/K)$ in $G = \text{Gal}(L/F)$. This means

$$G = \bigcup_i \sigma_i H \quad \text{(disjoint)}.$$

Similarly, let τ_1, \cdots, τ_l be left coset representatives for M in H, so

$$H = \bigcup_j \tau_j M \quad \text{(disjoint)}.$$

Then

$$G = \bigcup_i \sigma_i H = \bigcup_{i,j} \sigma_i \tau_j M,$$

so the $\sigma_i \tau_j$ are a set of coset representatives for M in G. This means that

$$N_{E/F}(\alpha) = \sum_{i,j} \sigma_i \tau_j(\alpha) = \sum_i \sigma_i \left(\sum_j \tau_j \alpha \right) = \sum_i \sigma_i (N_{E/K}(\alpha)) = N_{K/F}(N_{E/K}(\alpha)).$$

Now let us prove (d). We have inclusions $K \supseteq F(\alpha) \supseteq F$. Let $[F(\alpha) : F] = d$ so $[K : F(\alpha)] = n/d$. By the transitivity of the norm, $N_{K/F}(\alpha) = N_{F(\alpha)/F} N_{K/F(\alpha)}(\alpha)$. Since $\alpha \in F(\alpha)$, $\tau(\alpha) = \alpha$ for every embedding of K into L over $F(\alpha)$, and there are n/d such embeddings, so

$$N_{K/F(\alpha)}(\alpha) = \prod_{\tau} \tau(\alpha) = \alpha^{n/d}.$$

Now let us compute $N_{F(\alpha)/F}(\alpha)$. This is the product of the conjugates $\sigma(\alpha)$ of α. These are the distinct roots of the minimal polynomial

$$\prod_{i=1}^d (x - \sigma_i \alpha).$$
(The roots of this polynomial are all distinct since L/F is Galois and therefore separable, and so any intermediate extension such as $F(\alpha)/F$ is separable.) The constant term a_0 of this polynomial is then $(-1)^d \prod \sigma_i(\alpha) = (-1)^d N_{F(\alpha)/F}(\alpha)$. Therefore

$$N_{K/F}(\alpha) = N_{F(\alpha)/F}N_{K/F(\alpha)}(\alpha) = N_{F(\alpha)/F}(\alpha^{n/d}) = (N_{F(\alpha)/F}(\alpha))^{n/d} = ((-1)^d a_0)^{n/d} = (-1)^n a_0^{n/d}.$$

Problem 14.2 #18. With notation as in the previous problem, define the trace of α from K to F to be

$$\text{Tr}_{K/F}(\alpha) = \sum_{\sigma} \sigma(\alpha),$$

a sum of Galois conjugates of α.

(a) Prove that $\text{Tr}_{K/F}(\alpha) \in F$.

(b) Prove that $\text{Tr}_{K/F}(\alpha + \beta) = \text{Tr}_{K/F}(\alpha) + \text{Tr}_{K/F}(\beta)$, so that the trace is an additive map from K to F.

(c) Let $K = F(\sqrt{D})$ be a quadratic extension of K. Show that $\text{Tr}_{K/F}(a + b\sqrt{D}) = 2a$.

(d) Let $m_{\alpha}(x)$ be as in the previous problem. Prove that $\text{Tr}_{K/F}(\alpha) = -\frac{n}{d} a_{d-1}$.

Solution: This is so similar to the previous problem that we won’t write out solutions to (a) and (b). For (c), as in the previous problem the conjugates of $a + b\sqrt{D}$ over F are $a + b\sqrt{D}$ and $a - b\sqrt{D}$, so the trace is the sum $2a$ of these. For (d), this is also similar to the previous problem. We may use the transitivity property of the trace:

Proposition 3. Let $E \supset K \supset F$ and let $\alpha \in E$. Then $\text{Tr}_{E/F}(\alpha) = \text{Tr}_{K/F}(\text{Tr}_{E/K}(\alpha))$.

Problem 14.2 #21. Use the linear independence of characters to show that for any Galois extension K of F there is an element $\alpha \in K$ with $\text{Tr}_{K/F}(\alpha) \neq 0$.

Solution: The linear independence of characters is Theorem 7 on page 569. It is due to Artin. Since K/F is Galois, then

$$\text{Tr}_{K/F}(\alpha) = \sum_{\chi \in \text{Gal}(K/F)} \chi(\alpha).$$

If this is always zero, then $\sum \chi = 0$, contradicting Theorem 7 with all $a_i = 1$.

4
Problem 14.2 #22. Suppose K/F is a Galois extension of F and let σ be an element of $\text{Gal}(K/F)$.

(a) Suppose that $\alpha \in K$ is of the form $\alpha = \beta \sigma \beta$ for some nonzero $\beta \in K$. Prove that $N_{K/F}(\alpha) = 1$.

(b) Suppose that $\alpha \in K$ is of the form $\alpha = \beta - \sigma \beta$ for some $\beta \in K$. Prove that $\text{Tr}_{K/F}(\alpha) = 0$.

This problem sets up Hilbert’s Theorem 90 (Exercise 23) which we will be discussing later.

Solution: Since K/F is Galois,

$$N(\beta) = \prod_{\tau \in \text{Gal}(K/F)} \tau(\beta), \quad N(\sigma \beta) = \prod_{\tau \in \text{Gal}(K/F)} \tau \sigma(\beta),$$

But $\tau \mapsto \tau \sigma$ just permutes the elements of $\text{Gal}(K/F)$. Therefore $N(\beta) = N(\sigma(\beta))$. Thus $N(\beta/\sigma \beta) = N(\beta)/N(\sigma \beta) = 1$. Part (b) is similar.

Problem 14.3 #9. Let $q = p^m$ be a power of the prime p and let $\mathbb{F}_q = \mathbb{F}_{p^m}$ be the finite field with q elements. Let $\sigma_q = \sigma_p^m$ be the m-th power of the Frobenius automorphism σ_p, called the q-Frobenius automorphism.

(a) Prove that σ_q fixes \mathbb{F}_q.

(b) Prove that every finite extension of \mathbb{F}_q of degree n is the splitting field of $x^{q^n} - x$ over \mathbb{F}_q, and hence there is a unique such extension.

(c) Prove that every finite extension of \mathbb{F}_q of degree n is cyclic with σ_q as a generator.

(d) Prove that the subfields of the unique extension of \mathbb{F}_q of degree n are in bijection with the divisors d of n.

Solution. This problem is very similar to Proposition 15 on page 586. We could argue some points alternatively by making more use of Proposition 15.

(a) We may interpret σ_q as an automorphism of any field containing \mathbb{F}_p, in particular of \mathbb{F}_q. But as an automorphism of \mathbb{F}_q, it is trivial, and this is the content of (a). To see this, we must show that $\sigma_q(a) = a$ if $a \in \mathbb{F}_q$, that is, $a^q = a$. If $a = 0$ this is obvious, so assume that $a \in \mathbb{F}_q^\times$. This is a finite group of order $q - 1$, so $a^{q - 1} = 1$. Multiplying this equation by a gives $a^q = a$.

(b) If $[E : \mathbb{F}_q] = n$, then E is a vector space of dimension n over \mathbb{F}_q, so E has cardinality q^n. Now if $a \in E$, then we claim $a^{q^n} = a$. We may prove this the same way as (a): if $x = 0$ this is clear, and if $a \neq 0$, then a lies in a group E^\times of order $q^n - 1$, so $a^{q^n - 1} = 1$, so $a^{q^n} = a$. Now the polynomial
\(f(x) = x^{q^n} - x \) is separable, since \(f'(x) = -1 \), so \(f \) and \(f' \) are coprime. Thus its roots are distinct, but we have shown that the \(q^n \) elements of \(E \) are roots, so the elements of \(E \) are precisely the roots of this polynomial in an algebraic closure of \(E \). It is now clear that \(E \) is the splitting field of \(f \).

(c) With \(F = \mathbb{F}_q \) and \(E = \mathbb{F}_{q^n} \), the field \(E \) is the splitting field of a separable polynomial, so it is Galois over \(E \). The group \(G = \text{Gal}(E/F) \) has order \(n = [E : F] \), and \(\sigma_q \) is an element. To show that it is cyclic with generator \(\sigma_q \) sufficient to show that if \(m \) is a divisor of \(n = |G| \) and \(\sigma_q^m = 1_E \) then \(m = n \). Indeed, for all \(a \in E \), we have \(a = \sigma_q^m(a) = a^{q^m} \), so the polynomial \(x^{q^n} - x \) has \(q^n \) roots, namely all elements of \(E \). Because a polynomial of degree \(q^m \) cannot have more than \(q^m \) roots, we must have \(m = n \).

(d) This now follows from the fundamental theorem of Galois theory, since a cyclic group of order \(n \) has one subgroup for each divisor of \(n \).

Problem 14.3 #10. Prove that \(n \) divides \(\varphi(p^n - 1) \). [Hint: observe that \(\varphi(p^n - 1) \) is the order of the group of automorphisms of a cyclic group of order \(p^n - 1 \).]

Solution. By Proposition 16 on page 135 of Dummit and Foote, the group of automorphisms of the cyclic group \(\mathbb{Z}_m \) of order \(m \) is \((\mathbb{Z}/m\mathbb{Z})^\times \), which has order \(\phi(m) \). We apply this with \(m = p^n - 1 \). The group \(\mathbb{F}_{p^n}^\times \) is cyclic of order \(p^n - 1 \) so \(\text{Aut}(\mathbb{F}_{p^n}^\times) \) has order \(\phi(p^n - 1) \). Now we may exhibit an automorphism of order exactly \(n \), namely the Frobenius map \(x \mapsto x^p \). By Lagrange’s theorem, every element of \(\text{Aut}(\mathbb{F}_{p^n}^\times) \) must have order dividing \(|\text{Aut}(\mathbb{F}_{p^n}^\times)| \) and so \(n | p^n - 1 \).

Problem 14.5 #3. Determine the quadratic equation satisfied by the period \(\alpha = \zeta_5 + \zeta_5^{-1} \) of the fifth root of unity \(\zeta_5 \). Determine the quadratic equation satisfied by \(\zeta_5 \) over \(\mathbb{Q}(\alpha) \) and use this to explicitly solve for the fifth root of unity.

Solution. Let \(\sigma \in \text{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q}) \). Then \(\sigma(\zeta_5) = \zeta_5^a \) where \(a \) can be 1, 2, -1 or -2. So \(\sigma(\zeta_5) = \zeta_5^a + \zeta_5^{-a} \cdot \frac{\alpha + \sqrt{\alpha^2 - 4}}{2} \). This means that the conjugates of \(\alpha \) are \(\alpha = \zeta_5 + \zeta_5^{-1} \) and \(\beta = \zeta_5^2 + \zeta_5^{-2} \). Now

\[
1 + \alpha + \beta = 1 + \zeta_5 + \zeta_5^{-1} + \zeta_5^2 + \zeta_5^{-2} = 0.
\]

Also

\[
\alpha \beta = (\zeta_5 + \zeta_5^{-1})(\zeta_5^2 + \zeta_5^{-2}) = \zeta_5^3 + \zeta_5^{-1} + \zeta_5 + \zeta_5^{-3} = -1.
\]
Since $\alpha + b = \alpha \beta = -1$ we have
\[(x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha \beta = x^2 + x - 1.\]
The $f(x) = x^2 + x - 1$ is the quadratic equation satisfied by α, β and so α, β are
\[-\frac{1 \pm \sqrt{5}}{2}.
\]
With $\zeta_5 = e^{2\pi i/5}$ we have $\alpha = 2 \cos \left(\frac{2\pi}{5}\right) > 0$ since $0 < \frac{2\pi}{5} < \frac{\pi}{2}$, while $\beta = 2 \cos \left(\frac{4\pi}{5}\right) < 0$. So
\[\alpha = \frac{\sqrt{5} - 1}{2}, \quad \beta = -\frac{\sqrt{5} + 1}{2}.
\]
Now we are asked to find the quadratic equation satisfied by $\zeta = \zeta_5$ over $\mathbb{Q}(\alpha)$. Since α is real, complex conjugation $\sigma_{-1} \in \text{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q}(\alpha))$. Thus the conjugates of ζ over $\mathbb{Q}(\alpha)$ are ζ and ζ^{-1}, and the irreducible polynomial they satisfy is
\[(x - \zeta)(x - \zeta^{-1}) = x^2 - \alpha x + 1.\]
Using the quadratic equation again,
\[\zeta = \frac{\alpha \pm \sqrt{\alpha^2 - 4}}{2}.
\]
Here $\alpha^2 - 4 < 0$ so if we interpret the square root as $(\sqrt{4 - \alpha^2})i$ then we want the positive sign because ζ has positive imaginary part $\sin \left(\frac{2\pi}{5}\right)$. Thus
\[\zeta = \frac{\alpha + \sqrt{\alpha^2 - 4}}{2}.
\]
Problem 14.5 #4. Let $\sigma_a \in \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ denote the automorphism of the cyclotomic field of n-th roots of unity such that $\sigma_a(\zeta_n) = \zeta_n^a$. Show that $\sigma_a(\zeta) = \zeta^a$ for every n-th root of unity ζ.

Solution. For some m we have $\zeta = \zeta_n^m$. Therefore $\sigma_a(\zeta) = \sigma_a(\zeta_n)^m = \zeta_n^{am} = (\zeta_n^m)^a = \zeta^a$.

7