
Separable Degree

Dummit and Foote introduce the separable degree fairly late in Chapter 14 (page 650).
Moreover the definition they give is not the usual one, but the usual definition is useful and
important. I can recommend Lang’s Algebra for a better treatment of separability. But here
are the basic facts.

Let E/F be a field extension, and let Ω ⊃ F be another field. By an embedding of E
into Ω over F , we mean a field homomorphism φ : E −→ Ω such that φ(x) = x for x ∈ F .
The term embedding is used since φ is automatically injective, so φ isomorphically maps E
onto its image and hence “embeds” E into Ω.

In Galois theory, a useful point of view is to take Ω to be some sufficiently large field
containing F and to study embeddings of E into Ω over F . If Ω is “sufficiently large,” then
“all” embeddings of E will end up in Ω. Let us define these terms.

Definition 1. Let E/F be a finite extension. A field Ω ⊃ F is sufficiently large for the
extension E/F if whenever Ω′ ⊇ Ω is a bigger field and φ : E −→ Ω′ is an embedding over
F , we automatically have φ(E) ⊆ Ω.

An example of a field that is always sufficiently large for any finite extension E/F is the
algebraic closure of F . But actually a much smaller field will do if E/F is finite.

Proposition 1. Let E/F be a finite field extension, and let Ω0 ⊃ E be a splitting field over
F . Then Ω0 is sufficiently large for the extension E/F .

Proof. Let Ω′ ⊇ Ω0 be a larger field and let φ : E −→ Ω′ be an embedding over F . Let
α ∈ E. Then α is a root of an irreducible polynomial f ∈ F [X]. By Exercise 5 in Section 13.4
(HW2) f splits completely in Ω since Ω0 is a splitting field over F . Now φ(α) is another
root of f , so φ(α) ∈ Ω0. This proves φ(E) ⊆ Ω0.

1 Separable degree

Definition 2. Let E/F be a finite extension. The separable degree [E : F ]s is the number
of distinct embeddings E −→ Ω for Ω a sufficiently large field.

This definition doesn’t depend on Ω since by definition of the term “sufficiently large,”
increasing the size of Ω does not increase the number of embeddings if Ω.

Proposition 2. Let E ⊃ K ⊃ F . Assume E/F is a finite extension. Then

[E : F ]s = [E : K]s[K : F ]s.
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Proof. Let [K : F ]s = m and [E : K]s = n. Let φ1, · · · , φm be the distinct embeddings of
K into Ω over F , and let ψ1, · · · , ψn be the number of distinct embeddings of E into F over
K. Let Ω0 be a splitting field over F containing E.

We fix one of the φi.

Lemma 3. The number of distinct embeddings τ of E into Ω over F such that the restriction
of τ to K is φi is n.

Proof. Extend φi to an embedding φ̃i : Ω0 −→ Ω0 using Theorem 27 in Section 13.4 of
Dummit and Foote. We can do this since if Ω0 is a splitting field of f ∈ F [X] over F ,
it is also a splitting field of f over K, and also a splitting field of f over φi(K). Clearly
φ̃i : Ω0 −→ Ω0 is injective. Now consider φ̃−1i τ : E −→ Ω. The restriction of this map to K
is the identity. Indeed, if x ∈ K then by assumption τ(x) = φi(x), so

φ̃−1i τ(x) = φ−1i φi(x) = x.

Thus φ̃−1i τ is an embedding of E −→ Ω over K, that is, φ̃−1i τ = ψj for some j. Thus τ = φ̃iψj

for some j, proving that there are exactly n possible τ .

Now we may enumerate the embeddings τ : E −→ Ω as follows. For each i = 1, · · · ,m,
we see that there are exactly n that extend φi : K −→ Ω, or mn total. Thus [E : F ]s =
mn = [E : K]s[K : F ]s.

Proposition 4. Let E = F (α) where α ∈ E is the root of an irreducible polynomial f ∈
F [X]. Then [E : F ]s is the number of distinct roots of f , while [E : F ] is the degree of f .
Therefore [E : F ]s 6 [E,F ] with equality if and only if the polynomial f is separable.

Proof. We may assume f is monic. Let n = deg(f) and write

f(X) =
n∏

i=1

(x− αi)

Let Ω be a sufficiently large field for E/F and let Ω′ be a splitting field for f containing Ω.
For each i there is an embedding φi : F (α) −→ Ω′ such that φi(α) = αi by Theorem 6 in
Section 13.1. Since Ω is sufficiently large, we have φi(E) ⊆ Ω. Moreover if φ : F (α) −→ Ω
is any embedding it sends α to some αi, so φ is one of the φi. And finaly, note that φi = φj

if and only if αi = αj. So [E : F ]s equals the number of distinct φi, that is, the number of
distinct αi. Thus [E : F ]s 6 n with equality if and only if f is separable.

Proposition 5. If E/F is any finite extension, [E : F ]s 6 [E : F ].

Proof. If E/F is a simple extension, that is, if E = F (α) for some α, this follows from
Proposition 4. In the general case, let α1, · · · , αk ∈ E such that E = F (α1, · · · , αn). Then
E can be built up from F by a sequence of simple extensions:

F ⊂ F (α1) ⊂ F (α1, α2) ⊂ · · · ⊂ F (α1, · · · , αn) = E.

We have [F (α1, · · · , αk) : F (α1, · · · , αk−1)]s 6 [F (α1, · · · , αk) : F (α1, · · · , αk−1)]. Multiply-
ing these inequalities together we obtain [E : F ]s 6 [E : F ].
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We define the finite extension E/F to be separable if [E : F ]s = [E : F ]. This is equivalent
to the definition in Dummit and Foote, as we will soon show.

Proposition 6. Let E ⊇ K ⊇ F be finite extensions. Then E/F is separable if and only if
both extensions E/K and K/F are separable.

Proof. We have [E : K]s[K : F ]s = [E : F ]s 6 [E : F ] = [E : K][K : F ]. From this it is clear
that [E : F ]s = [E : F ] if and only if both [E : K]s = [E : K] and [K : F ]s = [K : F ].

Proposition 7. Let E/F be a finite extension. Then E/F is separable if and only if every
α ∈ E is a root of a separable polynomial in F [X].

This shows that our definition of separability is equivalent to Dummit and Foote’s.

Proof. Assume that E/F is separable. Then by Proposition 6 the extension F (α)/F is
separable for every α ∈ E, and by Proposition 4 this implies that α is a root of a separable
polynomial.

Conversely, suppose that every α ∈ E is the root of a separable polynomial. We will
show that E/F is separable. We will prove this by induction on degree, so assume that
this statement is true for extensions of degree < [E : F ]. If E = F , separability is clear.
Otherwise, α ∈ E − F , and let K = F (α). Since α is a root of a separable polynomial over
F , by Proposition 4 the extension F (α)/F is separable. To use Proposition 6, we must show
that E/K is separable. Now every element of E is a root of a separable polynomial over F ,
hence over K. Since [E : K] < [E : F ], induction on degree shows that E/K is separable,
as required.
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