Math 121 Homework 8

- Section 14.6 \# 1, 2, 3, 4, 40bc, 44
- Optional: Section 14.6 \# 49

Problem 1 in 14.6. Show that a cubic with a multiple root has a linear factor. That is, if $f \in F[x]$ is cubic and has a multiple root in an extension field, then it has a linear factor in $F[x]$. Assume that the characteristic is not 3. Is the same true for quartics?

Problem 2 in 14.6. Determine the Galois groups of the following polynomials:
(a) $x^{3}-x^{2}-4$
(b) $x^{3}-2 x+4$
(c) $x^{3}-x+1$
(d) $x^{3}+x^{2}-2 x-1$.

Problem 3 in 14.6. Prove that for any $a, b \in \mathbb{F}_{p^{n}}$ if $x^{3}+a x+b$ is irreducible then $-4 a^{3}-27 b^{2}$ is a square in $\mathbb{F}_{p^{n}}$.

Problem 4 in 14.6. Determine the Galois group of $x^{4}-25$ over \mathbb{Q}.
Problem 40bc. Express the following polynomials as polynomials in the elementary symmetric functions. In three variables these are

$$
e_{1}=x_{1}+x_{2}+x_{3}, \quad e_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}, \quad e_{3}=x_{1} x_{2} x_{3}
$$

Note: The book tells you to use a particular procedure, but I don't require you to do this. Also, the book uses the notations s_{i} for the elementary symmetric functions, but the notation e_{i} is standard in the mathematical literature since at least the 1980's.
(b) $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$.
(c) $x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+x_{2}^{2} x_{3}^{2}$.

Problem 44 in 14.6. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ be the roots of a quartic polynomial $f(x)$ over \mathbb{Q}. Show that the quantities $\alpha_{1} \alpha_{2}+\alpha_{3} \alpha_{4}, \alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{4}$ and $\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}$ are permuted by the Galois group of $f(x)$. Conclude that these elements are the roots of a cubic polynomial with coefficients in \mathbb{Q} (sometimes called the cubic resolvent of $f(x)$).

Problem 49 in 14.6 (Optional: this will not be graded). Prove that the Galois group over \mathbb{Q} of $x^{6}-4 x^{3}+1$ is isomorphic to the dihedral group of order 12. (Hint: Observe that the two real roots are inverses of each other.)

