Math 121 Homework 7

- Section 14.2 \# 16, 18abc, 22b
- Section 14.5 \# 3, 7
- Section 3.4 \# 5

Section 14.2 Problem 16. (a) prove that $x^{4}-2 x^{2}-2$ is irreducible over \mathbb{Q}.
(b) Show that the roots of this quartic are $\alpha_{1}=\sqrt{1+\sqrt{3}}, \alpha_{2}=\sqrt{1-\sqrt{3}}, \alpha_{3}=-\sqrt{1+\sqrt{3}}$, $\alpha_{4}=-\sqrt{1-\sqrt{3}}$.
(c) Let $K_{1}=\mathbb{Q}\left(\alpha_{1}\right)$ and $K_{2}=\mathbb{Q}\left(\alpha_{2}\right)$. Show that $K_{1} \neq K_{2}$ and $K_{1} \cap K_{2}=\mathbb{Q}(\sqrt{3}):=F$.
(d) Prove that K_{1} and K_{2} and $K_{1} K_{2}$ are Galois over F with $\operatorname{Gal}\left(K_{1} K_{2} / F\right)$ the Klein 4-group. Write out the elements of $\operatorname{Gal}\left(K_{1} K_{2} / F\right)$ explicitly as permutations of the α_{i}.
(e) Prove that the splitting field of $x^{4}-2 x^{2}-2$ over \mathbb{Q} is of degree 8 with dihedral Galois group.

Section 14.2 Problem 18 (parts a, b, c): With notation as in the previous problem [see book!] define the trace of α from K to F to be

$$
\operatorname{Tr}_{K / F}(\alpha)=\sum_{\sigma} \sigma(\alpha)
$$

a sum of Galois conjugates of α.
(a) Prove that $\operatorname{Tr}_{K / F}(\alpha) \in F$.
(b) Prove that $\operatorname{Tr}_{K / F}(\alpha+\beta)=\operatorname{Tr}_{K / F}(\alpha)+\operatorname{Tr}_{K / F}(\beta)$, so that the trace is an additive map from K to F.
(c) Let $K=F(\sqrt{D})$ be a quadratic extension of F. Show that $\operatorname{Tr}_{K / F}(a+b \sqrt{D})=2 a$. Note: for this part, assume $\operatorname{char}(F) \neq 2$.

Section 14.2 Problem 22: (part b) Suppose that K / F is a Galois extension and let σ be an element of the Galois group.
(b) Suppose that $\alpha \in K$ is of the form $\alpha=\beta-\sigma \beta$ for some $\beta \in K$. Prove that $\operatorname{Tr}_{K / F}(\alpha)=0$.

Section 14.5 Problem 3. Determine the quadratic equation satisfied by the period $\alpha=$ $\zeta_{5}+\zeta_{5}^{-1}$ of the 5 -th root of unity ζ_{5}. Determine the quadratic equation satisfied by ζ_{5} over $\mathbb{Q}(\alpha)$ and use this to explicity solve for the $5^{\text {th }}$ root of unity.

Section 14.5 Problem 7. Show that complex conjugation restricts to the automorphism $\sigma_{-1} \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ of the cyclotomic field of $n^{\text {th }}$ roots of unity. Show that the field $K^{+}=\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)$ is the subfield of real elements in $K=\mathbb{Q}\left(\zeta_{n}\right)$, called the maximal real subfield of K

Problem 5 in 3.4. Prove that subgroups and quotient groups of a solvable group are solvable.

