Math 121 Homework 5 Solutions

- Section 14.1 \# 4,10
- Section 14.2 \# 1,5,6,13.

Problem 4, Section 14.1. Prove that $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not isomorphic.
Problem 10, Section 14.1. Let K be an extension of the field F. Let $\varphi: K \longrightarrow K^{\prime}$ be an isomorphism of K with a field K^{\prime} which maps F to the subfield F^{\prime} of K^{\prime}. Prove that the map $\sigma \mapsto \varphi \sigma \varphi^{-1}$ defines a group isomorphism $\operatorname{Aut}(K / F) \longrightarrow \operatorname{Aut}\left(K^{\prime} / F^{\prime}\right)$.

Problem 1, Section 14.2. Determine the minimal polynomial over \mathbb{Q} for the element $\sqrt{2}+\sqrt{5}$.

Section 14.2, Problem 5. Prove that the Galois group of $x^{p}-2$ over \mathbb{Q} for p a prime is isomorphic to the group of matrices $\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right)$ for $a, b \in \mathbb{F}_{p}, a \neq 0$.

Section 14.2, Problem 6. Let $K=\mathbb{Q}(\sqrt{2}, i)$ and let $F_{1}=\mathbb{Q}(i), F_{2}=\mathbb{Q}(\sqrt{2}), F_{3}=$ $\mathbb{Q}(\sqrt{-2})$. Prove that $\operatorname{Gal}\left(K / F_{1}\right) \cong Z_{8}, \operatorname{Gal}\left(K / F_{2}\right) \cong D_{8}$ and $\operatorname{Gal}\left(K / F_{3}\right) \cong Q_{8}$.

Section 14.2, Problem 13. Show that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is a cyclic quartic field, that is, it is Galois over \mathbb{Q} of degree 4 with cyclic Galois group.

