Math 121 Homework 4

- Section 9.4 \# 2a, 2c, 7;
- Section 13.6 \# 3, 7;
- Section 14.1 \# 2, 3.

Problem 2, Section 9.4. Prove that the following polynomials are irreducible in $\mathbb{Z}[x]$. (a) $x^{4}-4 x^{3}+6$;
(c) $x^{4}+4 x^{3}+6 x^{2}+2 x+1$ (Substitute $x-1$ for x.)

Remark: By Gauss' Lemma (Proposition 5 on page 303), a monic polynomial that is irreducible in $\mathbb{Z}[x]$ is irreducible in $\mathbb{Q}[x]$. So these polynomials are irreducible in $\mathbb{Q}[x]$.

Problem 7, Section 9.4. Prove that $\mathbb{R}[x] /\left(x^{2}+1\right)$ is a field which is isomorphic to the field of complex numbers.

Problem 3, Section 13.6. Prove that if a field F contains the n-th roots of unity for n odd, then it contains the $2 n$-th roots of unity.

Problem 7, Section 13.6. Use the Möbius Inversion Formula indicated in Section 14.3 to prove

$$
\Phi_{m}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu(m / d)}
$$

Problem 2, Section 14.1. Let $\tau: \mathbb{C} \longrightarrow \mathbb{C}$ be the complex conjugation, defined by $\tau(a+b i)=a-b i$. Prove that τ is an automorphism of \mathbb{C}.

Problem 3, Section 14.1. Determine the fixed field of complex conjugation on \mathbb{C}.

