Normal Subgroups and Homomorphisms

We make frequent use of the multiplication of subgroups of a group G. If S and T are subgroups, let $S T=\{s t \mid s \in S, t \in T\}$. The multiplication of subsets is associative:

Lemma 1. If S, T and U are subsets of G then

$$
(S T) U=S(T U)
$$

Proof. This is clear since both sets consist of all products stu with $s \in S, t \in T$ and $u \in U$.

As a special case of the multiplication of subsets, if $T=\{t\}$ consists of a single element we will write $S t$ instead of $S\{t\}$.

A subgroup K of a group G is normal if $x K x^{-1}=K$ for all $x \in G$. Let G and H be groups and let $\phi: G \longrightarrow H$ be a homomorphism. Then the kernel $\operatorname{ker}(\phi)$ of ϕ is the subgroup of G consisting of all elements g such that $\phi(g)=1$.

Not every subgroup is normal. For example if $G=S_{3}$, then the subgroup $\langle(12)\rangle$ generated by the 2 -cycle (12) is not normal. On the other hand, the subgroup $K=\langle(123)\rangle$ generated by the 3 -cycle (123) is normal, since S_{3} has only one subgroup of order three, so $g K^{-1}=K$ for any g.

Proposition 1. The kernel of a homomorphism is a normal subgroup.
Proof. Let $\phi: G \longrightarrow H$ be a homomorphism and let $K=\operatorname{ker}(\phi)$. To show that K is normal, we must show that if $k \in K$ and $x \in G$ then $\mathrm{gkg}^{-1} \in K$. Indeed, we have

$$
\phi\left(g k g^{-1}\right)=\phi(g) \phi(k) \phi\left(g^{-1}\right)=\phi(g) \cdot 1 \cdot \phi(g)^{-1}=1
$$

because $k \in \operatorname{ker}(\phi)$ so $\phi(k)=1$. Therefore $g k g^{-1} \in K$ and so K is normal.
Since the kernel of a homomorphism is normal, we may ask the converse question of whether given a normal subgroup N of G it is always possible to find a homomorphism $\phi: G \longrightarrow H$ for some group H that has N as its kernel. The answer is affirmative, as we shall see.

If N is any subgroup of G (normal or not) then for $x \in G$ the set $N x$ is called a right coset. Similarly $x N$ is called a left coset.

Lemma 2. Let N be any subgroup of G. Then two right cosets of a subgroup N are either equal or disjoint.

Proof. Suppose that the cosets $N x$ and $N y$ are not disjoint. Then there exists some element $z \in N x \cap N y$. We may write $z=n x$ for some $n \in N$. Then $N z=N n x=N x$ where we have used the fact that N is a group, so $N=N n$. Similarly $N z=N y$ and so $N x=N y$.

For Lemma 2 we did not assume that N a normal subgroup, but we will assume it next.
Lemma 3. Let N be a normal subgroup of G.
(i) Every right coset $N x$ equals the left coset $x N$.
(ii) If $x, y \in G$ then

$$
\begin{equation*}
N x \cdot N y=N x y, \tag{1}
\end{equation*}
$$

so the product of two cosets is a coset.
Proof. To prove (i), since N is normal we have $N=x N x^{-1}$. Multiplying this on the right by x gives $N x=x N$.

To prove (ii), we can obtain equation (1) as follows:

$$
N x N y=N N x y=N x y .
$$

Here the first step uses $x N=N x$ from (i).
Theorem 1. Let N be a normal subgroup of G. Then the set G / N of right cosets of N is a group whose identity element is $N=N 1$. The map $\phi: G \longrightarrow G / N$ defined by $\phi(x)=N x$ is a homomorphism with kernel N.

Proof. By Lemma 3 the product of two cosets is a coset. Let us check the group axioms. The multiplication is associative by Lemma 1 . To check that G / N has an identity element, note that $N=N \cdot 1$ is itself a coset, and by (1) we have $N \cdot N x=N x \cdot N=N x$. Finally, taking x and y to be inverses in (1) shows that $N x^{-1}$ is a multiplicative inverse to $N x$ and so G / N is a group.

Now $\phi: G \longrightarrow G / N$ defined by $\phi(x)=N x$ is a homomorphism by (1). We have only to check that its kernel is N. Indeed x is in the kernel if and only if $\phi(x)=N$, and $N x=N$ is equivalent to $x \in N$, as required.

