
MATH 120: HOMEWORK 8

• Section 5.4 #5
• Section 5.5 #8,11
• Section 8.2 #1,4
• Section 8.3 #2

Problem 5.4 #5. Prove that An is the commutator subgroup of the symmetric group Sn

for n ⩾ 5.

Solution. This is actually true for n ⩾ 3. However the following argument will make use of
the simplicity of An (Theorem 24 in Section 4.6) so it would have to be modified for A4.

Lemma 1. Let G be any group then the commutator subgroup G′ is normal and G/G′ is
abelian; moreover if H is any normal subgroup of G then G/H is abelian if and only if
G′ ⊆ H.

Proof. This is (4) of Proposition 7 in page 169. □

We may solve the problem as follows. The subgroup An is normal and Sn/An has order 2,
hence is abelian; therefore by the Lemma S ′

n ⊆ An. Now the subgroup S ′
n is normal in Sn,

so it is normal in An, and nontrivial since Sn is nonabelian. Since An is simple, S ′
n = An.

Problem 5.5 #8. Construct a nonabelian group of order 75. Classify all groups of order
75 (there are 3 of them).

Solution. Let G be a group of order 75. Let Q be a 5-Sylow subgroup, and let P be a
3-Sylow. The Sylow theorem implies that Q is normal. Indeed, the number of 5-Sylows is
≡ 1 mod 5 and divides [G : Q] = 3, so this number can only be 1. Thus the 5-Sylow is
unique and therefore normal. P ∼= Z3 be a 3-Sylow. Then by Theorem 12 on page 180, G
is isomorphic to the semidirect product Q ⋊θ P for some θ : P −→ Aut(Q). There are two
possibilities for Q: it could be Z25 or Z5 × Z5. But if Q = Z25 then Aut(Q) ∼= (Z/25Z)× by
Proposition 16 on page 135. This has order φ(25) = 20 which is prime to 3, so in this case
θ must be trivial. Thus if Q is cyclic then G ∼= P ×Q ∼= Z3 × Z25

∼= Z75.
This leaves the case where Q ∼= Z5 × Z5. Then Aut(Q) ∼= GL2(F5) by part (3) of Propo-

sition 17 on page 136. This group has order (52 − 1)(52 − 5) = 24 · 20 = 480 = 25 · 3 · 5 by
Problem 1.4 #7 (Homework 2). So θ can be either the trivial homomorphism, producing
the group P × Q ∼= Z3 × Z5 × Z5

∼= Z15 × Z5, or it can be the isomorphism of P with a
3-Sylow subgroup of Aut(Q). These 3-Sylow subgroups are all conjugate by the Sylow the-
orem (applied to Aut(Q)) and it is possible to deduce that these nontrivial homomorphisms
P → Aut(Q) all produce isomorphic groups.

Problem 5.5 #11. Classify groups of order 28 (there are four isomorphism types).

Solution. Let G be a group of order 28. Let P be a 2-Sylow and Q a 7-Sylow. The number
of 7-Sylows is ≡ 1 mod 7 and divides [G : Q] = 4, so there is a unique 7-Sylow and therefore
Q is normal. Since Q ∩ P = 1, Theorem 12 on page 180 implies that G is a semidirect
product Q⋊θ P for some homomorphism θ : P → Aut(Q). Now Q has automorphism group
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Aut(Q) ∼= Aut(Z7) ∼= (Z/7Z)×. This is a cyclic group of order 6 generated by the coset

3 = 3 + 7Z, since 3
2
= 2, 3

3
= 6, 3

4
= 4, 3

5
= 5 and 3

6
= 1. So Aut(Q) ∼= Z6 contains a

unique subgroup ⟨σ−1⟩ of order 2, where σ−1 is the automorphism x → x−1 of (Z/7Z)×.
Now there are four groups that we can construct as follows. There are two possibilitys

for P , which has order 4. It can be Z4 or Z2 × Z2. In either case there is a homomorphism
θ : P → Aut(Q) ∼= Z6 which can be either trivial, or nontrivial, giving rise to four possible
semidirect products.

Problem 8.2 #1. Prove that in a principal ideal domain R two ideals (a) and (b) are
comaximal if and only if the greatest common divisor of a and b is 1.

Solution. By definition, the ideals (a) and (b) are comaximal if (a) + (b) = R. If (a) and
(b) are comaximal, this means that we can write 1 = ra+ sb for r, s ∈ R. Now if d|a, b then
d divides 1 = ra + sb, so d is a unit. This proves that 1 is the greatest common divisor of
a, b. On the other hand, suppose that 1 is the greatest common divisor of a, b. Consider the
ideal (a) + (b). This ideal is principal, so (a) + (b) = (d) for some d. Then a ∈ (d) so d|a
and similarly d|b. Since the greatest common divisor of a and b is 1, this means that d is a
unit, so (a) + (b) = (d) = R, proving that (a), (b) are comaximal.

Problem 8.2 #4. Let R be an integral domain. Prove that if the following two conditions
hold then R is a principal ideal domain.

(i) any two nonzero elements a and b have a greatest common divisor which can be written
in the form ra+ sb for some r, s ∈ R, and

(ii) If a1, a2, · · · are nonzero elements of R such that ai+1|ai for all i, then there is a positive
integer N such that an is a unit times aN for all n ⩾ N .

Solution.

Lemma 2. Suppose that a, b ∈ R have a greatest common divisor d that can be written as
ra+ sb. Then the ideal (a, b) = Ra+Rb equals (d).

Proof. Note that a and b are both multiples of d, so (a, b) ⊆ (d). On the other hand, d ∈ (a, b)
by assumption, so (d) ⊆ (a, b). □

Let I be an ideal of R. We wish to show that I is principal. We will construct two sequences
c1, c2, c3, · · · and a1, a2, a3, · · · of elements of I. The sequences will have the properties that if
Ik = (c1, · · · , ck) then Ik+1 strictly contains Ik, and Ik = (ak). We will obtain an contradiction
if I is not principal.
If I = 0 then I is principal, so assume that I ̸= 0. Pick 0 ̸= c1 ∈ I, and let a1 = c1. The

ideal I1 = (c1).
If I = I1 then I is principal, and we are done. Otherwise pick c2 ∈ I − I1, and define

I2 = (a1, c2). This is strictly larger than I1. By the Lemma and Assumption (i), we can find
a2 such that I2 = (a2).
Continuing in this way, if Ik = (c1, · · · , ck) = (ak) is defined, if Ik = I then I is principal

and we are done; otherwise, we pick ck+1 ∈ I − Ik, and let Ik+1 = (c1, · · · , ck, ck+1) =
(ak, ck+1); by Assumption (i) and the Lemma, Ik+1 is principal and we let ak+1 be a generator.
Now since ak ∈ Ik+1 = (ak+1) we have ak+1|ak. By Assumption (ii) we see that eventually

the process must terminate and ak+1 = ak times a unit, so Ik+1 = (ak+1) = Ik; this is a
contradiction since our construction guarantees that Ik+1 is strictly larger than Ik.
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Problem 8.3 #2. Let a and b be nonzero elements of the unique factorization domain
R. Prove that a and b have a least common multiple and describe it in terms of the prime
factorizations of a and b.

Solution. There is a finite set {p1, · · · , pN} of irreducible elements that divide either a or

b. Since R is a unique factorization domain, we may write a = εpk11 · · · pkNN where ε is a unit,

and similarly b = δpl11 · · · plNN with δ a unit. Let mi = min(ki, li) and define d = pm1
1 · · · pmN

N .
Then we claim that d iss a greatest common divisor of a and b. Let h ∈ R. We will show
that h divides both a and b if and only if h|d. Write h = µpr1 · · · prN . Then h|a if and only
if r1 ⩽ k1, · · · , rN ⩽ kN and similarly h|b if and only if r1 ⩽ l1, · · · , rN ⩽ lN . So h divides
both if and only if ri ⩽ min(ki, li) = mi, that is, h|a, b if and only if h|d. Thus h is a greatest
common divisor of a and b, and we have determined its factorization into primes.


