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e Section 5.4 #b5

e Section 5.5 #8,11
e Section 8.2 #14
e Section 8.3 #2

Problem 5.4 #5. Prove that A, is the commutator subgroup of the symmetric group S,
for n > 5.

Solution. This is actually true for n > 3. However the following argument will make use of
the simplicity of A,, (Theorem 24 in Section 4.6) so it would have to be modified for A,.

Lemma 1. Let G be any group then the commutator subgroup G’ is normal and G /G’ is
abelian; moreover if H is any normal subgroup of G then G/H is abelian if and only if
G' CH.

Proof. This is (4) of Proposition 7 in page 169. O

We may solve the problem as follows. The subgroup A, is normal and S,,/A,, has order 2,
hence is abelian; therefore by the Lemma S/, C A,,. Now the subgroup S), is normal in S,,,
so it is normal in A,,, and nontrivial since .S, is nonabelian. Since A,, is simple, S/ = A,,.

Problem 5.5 #8. Construct a nonabelian group of order 75. Classify all groups of order
75 (there are 3 of them).

Solution. Let G be a group of order 75. Let () be a 5-Sylow subgroup, and let P be a
3-Sylow. The Sylow theorem implies that () is normal. Indeed, the number of 5-Sylows is
= 1 mod 5 and divides [G : @] = 3, so this number can only be 1. Thus the 5-Sylow is
unique and therefore normal. P = Z3 be a 3-Sylow. Then by Theorem 12 on page 180, G
is isomorphic to the semidirect product @ Xy P for some 6 : P — Aut(Q). There are two
possibilities for Q: it could be Zy5 or Z5 x Z5. But if Q) = Zs5 then Aut(Q) = (Z/25Z)* by
Proposition 16 on page 135. This has order ¢(25) = 20 which is prime to 3, so in this case
0 must be trivial. Thus if Q) is cyclic then G = P x Q = Z3 X Zys = Zrs.

This leaves the case where @ = Z5 x Z5. Then Aut(Q) = GLy(F5) by part (3) of Propo-
sition 17 on page 136. This group has order (5% — 1)(5% —5) = 24 -20 = 480 = 2°-3 -5 by
Problem 1.4 #7 (Homework 2). So # can be either the trivial homomorphism, producing
the group P X Q = Z3 X Z5 X 45 = Zi5 X Zs, or it can be the isomorphism of P with a
3-Sylow subgroup of Aut(Q). These 3-Sylow subgroups are all conjugate by the Sylow the-
orem (applied to Aut(Q)) and it is possible to deduce that these nontrivial homomorphisms
P — Aut(Q) all produce isomorphic groups.

Problem 5.5 #11. Classify groups of order 28 (there are four isomorphism types).

Solution. Let GG be a group of order 28. Let P be a 2-Sylow and @) a 7-Sylow. The number
of 7-Sylows is = 1 mod 7 and divides [G : Q] = 4, so there is a unique 7-Sylow and therefore
@ is normal. Since Q N P = 1, Theorem 12 on page 180 implies that GG is a semidirect

product @ xg P for some homomorphism 6 : P — Aut(Q). Now @) has automorphism group
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Aut(Q) = Aut(Z;) = (Z/7Z)*. This is a cyclic group of order 6 generated by the coset
3=34+7Z since3 =2,3=6,3 =4,3 =5and3° =1. So Aut(Q) = Zg contains a
unique subgroup (o_1) of order 2, where o_; is the automorphism x — ! of (Z/7Z)*.

Now there are four groups that we can construct as follows. There are two possibilitys
for P, which has order 4. It can be Z, or Zy X Z,. In either case there is a homomorphism
0: P — Aut(Q) = Zg which can be either trivial, or nontrivial, giving rise to four possible
semidirect products.

Problem 8.2 #1. Prove that in a principal ideal domain R two ideals (a) and (b) are
comaximal if and only if the greatest common divisor of @ and b is 1.

Solution. By definition, the ideals (a) and (b) are comazimal if (a) + (b) = R. If (a) and
(b) are comaximal, this means that we can write 1 = ra + sb for r, s € R. Now if d|a, b then
d divides 1 = ra + sb, so d is a unit. This proves that 1 is the greatest common divisor of
a,b. On the other hand, suppose that 1 is the greatest common divisor of a,b. Consider the
ideal (a) + (b). This ideal is principal, so (a) + (b) = (d) for some d. Then a € (d) so d|a
and similarly d|b. Since the greatest common divisor of a and b is 1, this means that d is a
unit, so (a) + (b) = (d) = R, proving that (a), (b) are comaximal.

Problem 8.2 #4. Let R be an integral domain. Prove that if the following two conditions
hold then R is a principal ideal domain.

(i) any two nonzero elements a and b have a greatest common divisor which can be written
in the form ra + sb for some r,s € R, and

(ii) If ay, ag, - - - are nonzero elements of R such that a;,1|a; for all 7, then there is a positive
integer N such that a,, is a unit times ay for all n > N.

Solution.

Lemma 2. Suppose that a,b € R have a greatest common divisor d that can be written as

ra + sb. Then the ideal (a,b) = Ra + Rb equals (d).

Proof. Note that a and b are both multiples of d, so (a,b) C (d). On the other hand, d € (a, b)
by assumption, so (d) C (a,b). O

Let I be an ideal of R. We wish to show that I is principal. We will construct two sequences
c1,Ca,c3,+ -+ and ay, as, as, - - - of elements of I. The sequences will have the properties that if
I = (¢, -+, ¢x) then I, strictly contains Iy, and I, = (a;). We will obtain an contradiction
if I is not principal.

If I = 0 then [ is principal, so assume that [ # 0. Pick 0 # ¢; € I, and let a; = ¢;. The
ideal I} = (¢q).

If I = I, then [ is principal, and we are done. Otherwise pick ¢o € I — I, and define
Iy = (a1, c2). This is strictly larger than I;. By the Lemma and Assumption (i), we can find
as such that Iy = (az).

Continuing in this way, if I = (¢1, -+ ,cx) = (ag) is defined, if I, = I then [ is principal
and we are done; otherwise, we pick cxr1 € I — Iy, and let Iy = (¢1,-++ , CyChy1) =
(ax, cx41); by Assumption (i) and the Lemma, I is principal and we let a1 be a generator.

Now since ay, € Ij+1 = (ax4+1) we have agi1|ar. By Assumption (i) we see that eventually
the process must terminate and axy1 = aj times a unit, so Ipy1 = (agr1) = Ix; this is a
contradiction since our construction guarantees that I, is strictly larger than Ij.
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Problem 8.3 #2. Let a and b be nonzero elements of the unique factorization domain
R. Prove that a and b have a least common multiple and describe it in terms of the prime
factorizations of a and b.

Solution. There is a finite set {p;,--- ,pn} of irreducible elements that divide either a or
b. Since R is a unique factorization domain, we may write a = 6p’f1 e p?VN where ¢ is a unit,
N

and similarly b = 6p* - - -py with 6 a unit. Let m; = min(k;,l;) and define d = pi"* - - - py~.
Then we claim that d iss a greatest common divisor of @ and b. Let h € R. We will show
that h divides both a and b if and only if h|d. Write h = pp™ ---p™. Then h|a if and only
if riy < ky,---,ry < ky and similarly Alb if and only if ry < 1y, ,ry < Iy. So h divides
both if and only if r; < min(k;, ;) = my, that is, hla, b if and only if h|d. Thus h is a greatest
common divisor of ¢ and b, and we have determined its factorization into primes.



