
MATH 120: HOMEWORK 7 SOLUTIONS

• Section 5.4 #12
• Section 5.5 #7,8
• Section 8.2 #1,4,8
• Section 8.3 #2

Problem 5.4 #12. Use Theorem 4.17 to describe the automorphism group of a finite
cyclic group.

Solution. We will need the following fact.

Lemma 1. If |G| and |H| are coprime then Aut(G×H) ∼= Aut(G)× Aut(H).

Proof. If φ ∈ Aut(G) and ψ ∈ Aut(H) then we define an automorphism φ×ψ of Aut(G×H)
by (φ× ψ)(g, h) = (φ(g), ψ(h)). This gives us a group homomorphism (φ, ψ) 7→ φ× ψ from
Aut(G)× Aut(H) to Aut(G×H). It is obviously injective.

It is necessary to prove that every automorphism of G×H is of this form. To argue this,
we will identify G and H with their images in G × H. Since |G| and |H| are coprime, we
may characterize G as the set of elements of G × H whose orders are prime to |H|. From
this characterization of G we see that if α : G ×H −→ G ×H is any automorphism, then
α(G) ⊆ G. Similarly α(H) ⊆ H. Then if φ is the restriction of α to G and ψ is the restriction
of α to H, it is easy to see that α = φ× ψ. This proves that (φ, ψ) 7→ φ× ψ is a surjective
map from Aut(G)× Aut(H) to Aut(G×H). �

Let us describe the automorphism group of ZN . First we factor N into a product of
prime powers: N = pk11 · · · pkrr where pi are distinct primes. By Proposition 6 on page 163 of
Dummit and Foote, we have ZN

∼= Z
p
k1
1
× · · · × Zpkrr

, and using the Lemma we have

Aut(ZN) =
r∏

i=1

Aut
(
Z

p
ki
i

)
.

Now the groups Aut
(
Z

p
ki
i

)
are described in Proposition 4.17 of Dummit and Foote (page

136). We have

Aut
(
Z

p
ki
i

)
∼=


Z

p
ki−1
i

if pi is odd,

Z2 × Z2ki−2 if pi = 2, ki > 1,

1 if pkii = 2.

From this, we know the group of automorphisms of any finite cyclic group.

Problem 5.5 #7. This group describes thirteen isomorphism types of groups of order 56.
(It is not too difficult to show that every group of order 56 is isomorphic to one of these.)

(a) Prove that there are three abelian groups of order 56.
(b) Prove that every group of order 56 either has a normal 2-Sylow or a normal 8-Sylow.
(c) Construct the following non-abelian groups of order 56 which have a normal 7-Sylow

and whose 2-Sylow subgroup S is as specified:

• One group when S ∼= Z2 × Z2 × Z2
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• Two nonisomorphic groups when S ∼= Z4 × Z2

• One group when S ∼= Z8

• Two nonisomorphic groups when S ∼= Q8

• Three nonisomorphic groups when S ∼= D8

(d) Let G be a group of order 56 with a nonnormal Sylow 7-subgroup. Prove that if S is the
Sylow 2-subgroup then S ∼= Z2 × Z2 × Z2.

(e) Prove that there is a unique group of order 56 with a nonnormal 7-Sylow.

Solution. (a). The three abelian groups are Z8×Z7
∼= Z56, Z4×Z2×Z7 and Z2×Z2×Z2×Z7.

(b) (This was done in class.) Suppose that the 7-Sylow is not normal. We will prove that
the 2-Sylow is normal. By the Sylow theorems, the number of 7-Sylows divides 8 and is
≡ 1 modulo 7. Hence if the 7-Sylow is not normal, there are 8 7-Sylows. Each contains six
elements of order 7, so there are 8 · 6 = 48 elements of order 7. This leaves 56 − 48 = 8
elements that are not of order 7. Let S be the set of these 8 elements. Now if Q is a
2-Sylow then |Q| = 8 and (since Q cannot contain an element of order 7) we have Q ⊆ S.
Therefore Q = S. Now if g ∈ G then gQg−1 is another 2-Sylow so by the same argument
qQg−1 = S = Q and so Q is normal.

Now the strategy for constructing all groups of order 56 can be seen: if P is a 7-Sylow and
Q is a 2-Sylow, then either P or Q is normal. By the Second Isomorphism Theorem (page
97) PQ is a group, and since it contains subgroups of orders 7 and 8, PQ = G. Therefore G
is a semidirect product. To describe it, we need to find homomorphisms ϕ : P −→ Aut(Q)
if Q is normal, or Q −→ Aut(P ) if P is normal. Given such a homomorphism, we can
construct a semidirect product by Theorem 10 on page 176 of Dummit and Foote.

(c) If the 7-Sylow P is normal then Aut(P ) ∼= Z6, and we are looking for homomorphisms
ϕ : Q −→ Z6 where Q is a group of order 8. If the homorphism ϕ is trivial, then the group
will be non-abelian only if Q is nonabelian. Thus we have two groups Q8×Z7 and D8×Z7,
where Q8 and D8 are the quaternion and dihedral nonabelian groups. If ϕ is nontrivial, let
H = ker(ϕ) ⊆ Q. Since Aut(P ) ∼= Z6 has a unique subgroup A of order 2 and since Q has
order a power of 2, the image of ϕ must be A and H is of index 2.

Problem 5.5 #8. Construct a nonabelian group of order 75. Classify all groups of order
75 (there are 3 of them).

Solution. Let G be a group of order 75 = 3 ·52. Then by the Sylow theorem, the number of
5-Sylows is ≡ 1 mod 5 and divides 3, so the 5-Sylow Q is normal. If P is the 3-Sylow, then
G is a semidirect product of P with the normal subgroup Q. Both P and Q are abelian, so
for G to be nonabelian, the homomorphism ϕ : P −→ Aut(Q) must be nontrivial.

There are two possibilities for Q. If Q ∼= Z25 then Aut(Q) is cyclic of order 20, by Problem
5.4 #12. There can be no nontrivial homomorphism Z3 −→ Aut(Q), so if the 5-Sylow is
cyclic, G is abelian, indeed G = Z3 × Z25

∼= Z75.
On the other hand if Q ∼= Z5×Z5, then Aut(Q) ∼= GL(2,F5), which has order 25 ·3 ·5, and

there does exist a nontrivial subgroup of order 3, hence there does indeed exist a nontrivial
homomorphism Z3 −→ Aut(Q), and in this way we obtain a semidirect product.

The last remaining group is another abelian group Z3 × Z5 × Z5.

Problem 8.2 #1. Prove that in a principal ideal domain R two ideals (a) and (b) are
comaximal if and only if the greatest common divisor of a and b is 1.
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Solution. By definition, the ideals (a) and (b) are comaximal if (a) + (b) = R. If (a) and
(b) are comaximal, this means that we can write 1 = ra+ sb for r, s ∈ R. Now if d|a, b then
d divides 1 = ra + sb, so d is a unit. This proves that 1 is the greatest common divisor of
a, b. On the other hand, suppose that 1 is the greatest common divisor of a, b. Consider the
ideal (a) + (b). This ideal is principal, so (a) + (b) = (d) for some d. Then a ∈ (d) so d|a
and similarly d|b. Since the greatest common divisor of a and b is 1, this means that d is a
unit, so (a) + (b) = (d) = R, proving that (a), (b) are comaximal.

Problem 8.2 #4. Let R be an integral domain. Prove that if the following two conditions
hold then R is a principal ideal domain.

(i) any two nonzero elements a and b have a greatest common divisor which can be written
in the form ra+ sb for some r, s ∈ R, and

(ii) If a1, a2, · · · are nonzero elements of R such that ai+1|ai for all i, then there is a positive
integer N such that an is a unit times aN for all n > N .

Solution.

Lemma 2. Suppose that a, b ∈ R have a greatest common divisor d that can be written as
ra+ sb. Then the ideal (a, b) = Ra+Rb equals (d).

Proof. Note that a and b are both multiples of d, so (a, b) ⊆ (d). On the other hand, d ∈ (a, b)
by assumption, so (d) ⊆ (a, b). �

Let I be an ideal of R. We wish to show that I is principal. We will construct two sequences
c1, c2, c3, · · · and a1, a2, a3, · · · of elements of I. The sequences will have the properties that if
Ik = (c1, · · · , ck) then Ik+1 strictly contains Ik, and Ik = (ak). We will obtain an contradiction
if I is not principal.

If I = 0 then I is principal, so assume that I 6= 0. Pick 0 6= c1 ∈ I, and let a1 = c1. The
ideal I1 = (c1).

If I = I1 then I is principal, and we are done. Otherwise pick c2 ∈ I − I1, and define
I2 = (a1, c2). This is strictly larger than I1. By the Lemma and Assumption (i), we can find
a2 such that I2 = (a2).

Continuing in this way, if Ik = (c1, · · · , ck) = (ak) is defined, if Ik = I then I is principal
and we are done; otherwise, we pick ck+1 ∈ I − Ik, and let Ik+1 = (c1, · · · , ck, ck+1) =
(ak, ck+1); by Assumption (i) and the Lemma, Ik+1 is principal and we let ak+1 be a generator.

Now since ak ∈ Ik+1 = (ak+1) we have ak+1|ak. By Assumption (ii) we see that eventually
the process must terminate and ak+1 = ak times a unit, so Ik+1 = (ak+1) = Ik; this is a
contradiction since our construction guarantees that Ik+1 is strictly larger than Ik.

Problem 8.2 #8. Prove that if R is a Principal Ideal Domain and D a multiplicatively
closed subset of R, then D−1R is also a PID.

Solution. First we will argue that D−1R is an integral domain by showing it is a subring
of a field. Since R is an integral domain, it is a subring of its field F of fractions. We will
argue that D−1R is a subring of the same field F . Indeed, let φ : R −→ F be the inclusion
map. By Theorem 15 on page 261 of Dummit and Foote, φ can be extended to an injective
homomorphism Φ : D−1R −→ F , and we identify D−1R with its image. Since F is a field,
D−1R is an integral domain.

We have also learned that R is isomorphic to a subring of D−1R, and we will identify R
with its image in D. Thus D−1R can be identified with all fractions a/d in F with d 6= 0.
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Now let us show that every ideal I in D−1R is principal. Note that I ∩R is an ideal of R,
so I ∩R = aR for some a ∈ R. Now we will argue that I = aD−1R.

Since a ∈ I and I is an ideal, aD−1R ⊆ I. Conversely, let u/d ∈ I with u ∈ R and d ∈ D.
Since I is an ideal and d ∈ R ⊆ D−1R, we have u = d(u/d) ∈ I, so u ∈ I ∩ R = (a), in

other words, u = ab for some b. But then u/d = a(b/d) ∈ aD−1R proving that I ⊆ aD−1R.
We have proven that the ideal I equals aD−1R and so it is principal. Therefore D−1R is

an integral domain in which every ideal is principal, that is, a PID.

Problem 8.3 #2. Let a and b be nonzero elements of the unique factorization domain
R. Prove that a and b have a least common multiple and describe it in terms of the prime
factorizations of a and b.

Solution. There is a finite set {p1, · · · , pN} of irreducible elements that divide either a or

b. Since R is a unique factorization domain, we may write a = εpk11 · · · p
kN
N where ε is a unit,

and similarly b = δpl11 · · · p
lN
N with δ a unit. Let mi = min(ki, li) and define d = pm1

1 · · · p
mN
N .

Then we claim that d iss a greatest common divisor of a and b. Let h ∈ R. We will show
that h divides both a and b if and only if h|d. Write h = µpr1 · · · prN . Then h|a if and only
if r1 6 k1, · · · , rN 6 kN and similarly h|b if and only if r1 6 l1, · · · , rN 6 lN . So h divides
both if and only if ri 6 min(ki, li) = mi, that is, h|a, b if and only if h|d. Thus h is a greatest
common divisor of a and b, and we have determined its factorization into primes.


