
MATH 120: HOMEWORK 6 SOLUTIONS

• Section 4.3 # 28,34
• Section 4.4 # 2,13
• Section 4.5 # 13,25
• Section 7.4 # 37
• Section 7.5 # 3

Problem 4.3 #28. Let p and q be distinct primes with p < q. Prove that a nonabelian
group G of order pq has a nonnormal subgroup of index q, so there exists an injective
homomorphism G −→ Sq. Deduce that G is isomorphic to a subgroup of the normalizer in
Sq of the cyclic group generated by the q-cycle (1, 2, · · · , q).
Solution. By Cauchy’s theorem G has element x and y of orders p and q, respectively. Let
P and Q be the cyclic subgroups they generate. Then Q is normal by Corollary 5 on page
120. We claim that P is not normal. If it is, then xyx−1y−1 = x(yxy−1)−1 is a product of
two elements of P , so it is in P ; while xyx−1y−1 = (xyx−1)y−1 is a product of two elements
of Q so it is in Q. This means that xyx−1y−1 ∈ P ∩Q = 1 so x and y commute. However x
and y generate G since the order of the group they generate has order a multiple of both p
and q, so 〈x, y〉 = G. If x and y commute then G is abelian, which is a contradiction. This
proves that P is not normal.

NowG acts on the setX of left cosets of P by left multiplication. Denote these x1P, · · · , xqP .
We have a homomorphism θ : G −→ Bij(X), where Bij(X) ∼= Sq is the set of bijections of
X. We claim that θ is injective. If k ∈ ker(θ) then xiP = θ(k)xiP = kxiP for all xi, so
x−1i kxiP = P and x−1i kxi ∈ P . This implies that k ∈

⋂
xiPx

−1
i . Since P is not normal, this

intersection is 1 implying that k = 1 and therefore θ is injective.
Because θ is injective we may identify G with its image in Sq. The only elements of order

q in Sq are q-cycles, so θ(y) is a q-cycle. Without loss of generality we may assume that
θ(y) = (1, 2, · · · , q). Then Q is identified with 〈(1, 2, · · · , q)〉. Since Q is normal, the image
of G is contained in the normalizer of this cyclic subgroup, as required.

Problem 4.3 # 34. Prove that if p is a prime and P is a subgroup of Sp of order p then
|NSp(P )| = p(p − 1). [Argue that every conjugate of P contains exactly p − 1 p-cycles and
use the formula for the number of p-cycles to compute the index of NSp(P ) in Sp.]

Solution. Let P1 = P, P2 · · · , Ph be the subgroups of Sp of order p. Each of these subgroups
is cyclic of order p, and is generated by a p-cycle. They are all conjugate.

Let P ∗i = Pi − {1}. Then P ∗i are clearly disjoint, and their union is the set of all p-cycles.
Since |P ∗i | = p− 1 this means that (p− 1)h is the total number of p-cycles in Sp. To count
these another way, every p-cycle can be written (1ab · · · z) where a, b, · · · , z are 2, 3, · · · , p in
some order. There are (p− 1)! possibilities. Thus (p− 1)h = (p− 1)! so h = (p− 2)!.

Now h is the number of conjugates of P = P1, that is [Sp : NG(P )] = (p− 2)!. Now

|NSp(P )| = |Sp|
[Sp : NSp(P )]

=
p!

(p− 2)!
= p(p− 1).
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Problem 4.4 # 2. Prove that if G is an abelian group of order pq, where p and q are
distinct primes then G is cyclic.

Solution. By Cauchy’s theorem, G has elements x and y of order p and q respectively. Let
z = xy. We will show that z generates G. First note that zq = xqyq = xq. Since x has order
p and p - q, xq has order p. Similarly zp has order q. The order of z must therefore be a
multiple of both p and q, in other words, a multiple of pq. By Lagrange’s theorem, the order
of z divides |G| = pq, so pq is exacctly the order of z. Thus z is a generator of G and G is
cyclic.

Problem 4.4 # 13. Let G be a group of order 203. Prove that if G has a normal subgroup
H of order 7 then H ⊆ Z(G).

Solution. We have 203 = 7 · 29. We are assuming that H has order 7 and is normal. We
then have a homomorphism φ : G −→ Aut(H) which is the action by conjugation. In other
words, φ(g) is the automorphism cg ∈ Aut(H) defined by cg(x) = gxg−1. Now Aut(H) has
order 6 by Proposition 16 on page 135 of Dummit and Foote. Therefore the image of φ is
a subgroup of an order 6 that is isomorphic to G/ ker(φ); so its order divides both 6 and
203. Since 6 and 203 are coprime, this means that φ is the trivial map, so cg is the identity
automorphism of H for all g. That is, gxg−1 = cg(x) = x for all x ∈ H and g ∈ G. Therefore
H is contained in the center of G.

Problem 4.5 # 13. Prove that a group of order 56 has a normal p-Sylow subgroup for
some prime p dividing 56.

Solution. Suppose that |G| = 56. The 7-Sylow has either 1 or 8 conjugates, since the
number of 7-Sylows is ≡ 1 mod 7 and divides 56. Thus either the 7-Sylow is normal or it has
8 conjugates P1, · · · , P8. Each Pi contains 6 elements of order 7, and these are all distinct.
So G has 8 · 6 = 48 elements of order 7. Now let Q be a 2-Sylow, so |Q| = 8. There are
precisely 8 elements that are not of order 7, so

Q = {g ∈ G|g does not have order 7} .
From this we see that the elements of Q are permuted by conjugation, so hQh−1 = Q for all
h, and Q is normal.

Problem 4.5 # 25. Prove that if G is a group of order 385 then Z(G) contains a 7-Sylow
subgroup and an 11-Sylow subgroup is normal in G.

Solution. Since 385 = 5·7·11, the number of 7-Sylows divides 55 and is ≡ 1 mod 7; therefore
the 7-Sylow P is normal. Also the number of 11-Sylows divides 35 and is ≡ 1 mod 11, so the
11-Sylow is also normal. But we have to show that the 7-Sylow is central. This is somewhat
similar to We have a homomorphism θ : G −→ Aut(P ) in which θ(g) is conjugation by P .
The image is a subgroup of Aut(P ), which has order 6, which is isomorphic to G/ ker(θ);
hence it has order dividing both 6 and 386. Since these are coprime, θ is trivial, meaning
that θ(g) = 1P for all P . Thus if x ∈ P we have gxg−1 = θ(g)x = x, and so P is central.

Problem 7.4 #37. A commutative ring R is called a local ring if it has a unique maximal
ideal. Prove that if R is a local ring with maximal ideal M then every element of R−M is
a unit. Prove conversely that if R is a commutative ring with unit such that the nonunits of
R form an ideal, then R is a local ring with a unique maximal ideal M .
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Solution. Let R be local with maximal ideal M . We will show that M is the set of non-units
in R. If x ∈ M then Rx ⊆ M so 1 /∈ Rx, meaning that x is a nonunit. On the other hand,
suppose that x is a non-unit. Then Rx is a proper ideal of R. By Proposition 11 on page
254 of Dummit and Foote, it is contained in a maximal ideal. Since R has a unique maximal
ideal M , Rx ⊆M . Therefore x ∈M . We have proved that M is the set of nonunits.

If R is a commutative ring such that the nonunits form an ideal M , we are asked to show
that R is local. First let us check that M is maximal. If I is any ideal such that M ⊆ I, then
either I = M or I contains an element x /∈M . Thus x is a nonunit and so R = Rx ⊂ RI = I.
Hence M is maximal. To see that it is the unique maximal ideal, suppose that M ′ is another
maximal ideal. Then since M ′ is proper, M ′ consists of nonunits, so M ′ ⊆ M ; since M is
maximal, M ′ = M .

Here is an example of a local ring: let

R = {a/b ∈ Q|a, b ∈ Z, b odd}
It is easy to see that R is closed under addition and multiplication, so it is a ring. It is local,
with maximal ideal

M = {a/b|a, b ∈ Z, a even, b odd.}

Problem 7.5 # 3. Let F be a field. Prove that F contains a unique smallest subfield F0

and that F0 is isomorphic to either Q or Z/pZ for some prime p.

Solution. In Exercise 7.3 #26 we constructed a homomorphism ϕ : Z −→ F such that
ϕ(1) = 1. Let p be the kernel of ϕ. Since ϕ(Z) is a subring of a field, it is an integral
domain. By the first isomorphism theorem, ϕ(Z) ∼= Z/p, and therefore p is a prime ideal.
The prime ideals of Z are (0), and (p) where p is a prime integer. There are thus 2 cases.

First, suppose that p = 0. Then ϕ is injective, by Corollary 16 on page 263 of Dummit
and Foote, the smallest field F0 of F that contains ϕ(Z) ∼= Z is isomorphic to the field of
fractions Q of Z. Any subfield of F contains 1, hence the image of ϕ, and so F0 is the
smallest subfield of F .

If p = (p), then ϕ(Z) ∼= Z/(p) is already a field, and it is a subfield of F . This is the field
F0 in this case. Since any subfield of F contains 1, it contains ϕ(Z), and so F0 is the smallest
subfield of F .


