MATH 120: HOMEWORK 6 SOLUTIONS

e Section 4.3 # 28,34
e Section 4.4 # 2,13
e Section 4.5 # 13,25
e Section 7.4 # 37

e Section 7.5 # 3

Problem 4.3 #28. Let p and ¢ be distinct primes with p < ¢q. Prove that a nonabelian
group G of order pg has a nonnormal subgroup of index ¢, so there exists an injective
homomorphism G — S,. Deduce that G is isomorphic to a subgroup of the normalizer in
S, of the cyclic group generated by the g-cycle (1,2,--- . q).

Solution. By Cauchy’s theorem G has element x and y of orders p and ¢, respectively. Let
P and @ be the cyclic subgroups they generate. Then () is normal by Corollary 5 on page
120. We claim that P is not normal. If it is, then xyz—'y~' = z(yaxy~!)~! is a product of
two elements of P, so it is in P; while xyz 'y~ = (xyz—')y~! is a product of two elements
of Q so it is in Q. This means that zyz~'y~' € PNQ = 1 so x and y commute. However z
and y generate (G since the order of the group they generate has order a multiple of both p
and ¢, so (x,y) = G. If x and y commute then G is abelian, which is a contradiction. This
proves that P is not normal.

Now G acts on the set X of left cosets of P by left multiplication. Denote these z, P, --- , z,P.
We have a homomorphism 6 : G — Bij(X), where Bij(X) = S, is the set of bijections of
X. We claim that 6 is injective. If k € ker(f) then x;P = 6(k)x;P = ka; P for all z;, so
27 'kx;P = P and x; 'kx; € P. This implies that k € () x;Px;'. Since P is not normal, this
intersection is 1 implying that £ = 1 and therefore 6 is injective.

Because ¢ is injective we may identify G with its image in S,. The only elements of order
q in S, are g-cycles, so 0(y) is a g-cycle. Without loss of generality we may assume that
O(y) = (1,2,---,q). Then @ is identified with ((1,2,---,¢)). Since @ is normal, the image
of GG is contained in the normalizer of this cyclic subgroup, as required.

Problem 4.3 # 34. Prove that if p is a prime and P is a subgroup of S, of order p then
|Ng,(P)| = p(p — 1). [Argue that every conjugate of P contains exactly p — 1 p-cycles and
use the formula for the number of p-cycles to compute the index of Ng, (P) in S,.]

Solution. Let P, = P, P, - -- , P, be the subgroups of S, of order p. Each of these subgroups
is cyclic of order p, and is generated by a p-cycle. They are all conjugate.

Let P = P, — {1}. Then P} are clearly disjoint, and their union is the set of all p-cycles.
Since |P}| = p — 1 this means that (p — 1)h is the total number of p-cycles in S,. To count
these another way, every p-cycle can be written (lab- - z) where a,b,--- ,z are 2,3,--- |pin
some order. There are (p — 1)! possibilities. Thus (p — 1)h = (p — 1)! so h = (p — 2)!.

Now h is the number of conjugates of P = Py, that is [S, : Ng(P)] = (p — 2)!. Now
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Problem 4.4 # 2. Prove that if G is an abelian group of order pq, where p and ¢ are
distinct primes then G is cyclic.

Solution. By Cauchy’s theorem, G has elements x and y of order p and ¢ respectively. Let
z = xy. We will show that z generates GG. First note that z¢ = 2%y? = z9. Since x has order
p and p 1 ¢, 27 has order p. Similarly 2P has order q. The order of z must therefore be a
multiple of both p and ¢, in other words, a multiple of pg. By Lagrange’s theorem, the order
of z divides |G| = pgq, so pq is exacctly the order of z. Thus z is a generator of G and G is
cyclic.

Problem 4.4 # 13. Let G be a group of order 203. Prove that if G has a normal subgroup
H of order 7 then H C Z(G).

Solution. We have 203 = 7 -29. We are assuming that H has order 7 and is normal. We
then have a homomorphism ¢ : G — Aut(H) which is the action by conjugation. In other
words, ¢(g) is the automorphism ¢, € Aut(H) defined by ¢,(z) = grg~'. Now Aut(H) has
order 6 by Proposition 16 on page 135 of Dummit and Foote. Therefore the image of ¢ is
a subgroup of an order 6 that is isomorphic to G/ker(¢); so its order divides both 6 and
203. Since 6 and 203 are coprime, this means that ¢ is the trivial map, so ¢4 is the identity
automorphism of H for all g. That is, grg™' = ¢,(z) = x for all z € H and g € G. Therefore
H is contained in the center of G.

Problem 4.5 # 13. Prove that a group of order 56 has a normal p-Sylow subgroup for
some prime p dividing 56.

Solution. Suppose that |G| = 56. The 7-Sylow has either 1 or 8 conjugates, since the
number of 7-Sylows is = 1 mod 7 and divides 56. Thus either the 7-Sylow is normal or it has
8 conjugates P, --- , Ps. Each P; contains 6 elements of order 7, and these are all distinct.
So G has 8 - 6 = 48 elements of order 7. Now let @ be a 2-Sylow, so |@| = 8. There are
precisely 8 elements that are not of order 7, so

Q = {g € G|g does not have order 7} .

From this we see that the elements of () are permuted by conjugation, so hQh~! = Q for all
h, and () is normal.

Problem 4.5 # 25. Prove that if G is a group of order 385 then Z(G) contains a 7-Sylow
subgroup and an 11-Sylow subgroup is normal in G.

Solution. Since 385 = 5-7-11, the number of 7-Sylows divides 55 and is = 1 mod 7; therefore
the 7-Sylow P is normal. Also the number of 11-Sylows divides 35 and is = 1 mod 11, so the
11-Sylow is also normal. But we have to show that the 7-Sylow is central. This is somewhat
similar to We have a homomorphism 6 : G — Aut(P) in which 6(g) is conjugation by P.
The image is a subgroup of Aut(P), which has order 6, which is isomorphic to G/ ker(6);
hence it has order dividing both 6 and 386. Since these are coprime, 6 is trivial, meaning
that 6(g) = 1p for all P. Thus if x € P we have gzg~' = 0(g)x = z, and so P is central.

Problem 7.4 #37. A commutative ring R is called a local ring if it has a unique maximal
ideal. Prove that if R is a local ring with maximal ideal M then every element of R — M is
a unit. Prove conversely that if R is a commutative ring with unit such that the nonunits of
R form an ideal, then R is a local ring with a unique maximal ideal M.
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Solution. Let R be local with maximal ideal M. We will show that M is the set of non-units
in R. If x € M then Rx C M so 1 ¢ Rz, meaning that x is a nonunit. On the other hand,
suppose that x is a non-unit. Then Rx is a proper ideal of R. By Proposition 11 on page
254 of Dummit and Foote, it is contained in a maximal ideal. Since R has a unique maximal
ideal M, Rx C M. Therefore x € M. We have proved that M is the set of nonunits.

If R is a commutative ring such that the nonunits form an ideal M, we are asked to show
that R islocal. First let us check that M is maximal. If [ is any ideal such that M C I, then
either I = M or I contains an element z ¢ M. Thus z is a nonunit and so R = Rx C RI = 1.
Hence M is maximal. To see that it is the unique maximal ideal, suppose that M’ is another
maximal ideal. Then since M’ is proper, M’ consists of nonunits, so M’ C M; since M is
maximal, M’ = M.

Here is an example of a local ring: let

R ={a/beQla,be Z,bodd}

It is easy to see that R is closed under addition and multiplication, so it is a ring. It is local,
with maximal ideal

M = {a/bla,b € Z,a even, b odd.}

Problem 7.5 # 3. Let F be a field. Prove that F' contains a unique smallest subfield Fj
and that Fjy is isomorphic to either Q or Z/pZ for some prime p.

Solution. In Exercise 7.3 #26 we constructed a homomorphism ¢ : Z — F such that
©(1) = 1. Let p be the kernel of . Since p(Z) is a subring of a field, it is an integral
domain. By the first isomorphism theorem, ¢(Z) = Z/p, and therefore p is a prime ideal.
The prime ideals of Z are (0), and (p) where p is a prime integer. There are thus 2 cases.

First, suppose that p = 0. Then ¢ is injective, by Corollary 16 on page 263 of Dummit
and Foote, the smallest field Fy of F' that contains ¢(Z) = Z is isomorphic to the field of
fractions Q of Z. Any subfield of F' contains 1, hence the image of ¢, and so Fj is the
smallest subfield of F.

If p = (p), then p(Z) = Z/(p) is already a field, and it is a subfield of F. This is the field
Fp in this case. Since any subfield of F' contains 1, it contains ¢(Z), and so Fj is the smallest
subfield of F.



