MATH 120: HOMEWORK 6 SOLUTIONS

- Section 4.3 \# 28,34
- Section 4.4 \# 2,13
- Section 4.5 \# 13,25
- Section 7.4 \# 37
- Section 7.5 \# 3

Problem 4.3 \#28. Let p and q be distinct primes with $p<q$. Prove that a nonabelian group G of order $p q$ has a nonnormal subgroup of index q, so there exists an injective homomorphism $G \longrightarrow S_{q}$. Deduce that G is isomorphic to a subgroup of the normalizer in S_{q} of the cyclic group generated by the q-cycle $(1,2, \cdots, q)$.
Solution. By Cauchy's theorem G has element x and y of orders p and q, respectively. Let P and Q be the cyclic subgroups they generate. Then Q is normal by Corollary 5 on page 120. We claim that P is not normal. If it is, then $x y x^{-1} y^{-1}=x\left(y x y^{-1}\right)^{-1}$ is a product of two elements of P, so it is in P; while $x y x^{-1} y^{-1}=\left(x y x^{-1}\right) y^{-1}$ is a product of two elements of Q so it is in Q. This means that $x y x^{-1} y^{-1} \in P \cap Q=1$ so x and y commute. However x and y generate G since the order of the group they generate has order a multiple of both p and q, so $\langle x, y\rangle=G$. If x and y commute then G is abelian, which is a contradiction. This proves that P is not normal.

Now G acts on the set X of left cosets of P by left multiplication. Denote these $x_{1} P, \cdots, x_{q} P$. We have a homomorphism $\theta: G \longrightarrow \operatorname{Bij}(X)$, where $\operatorname{Bij}(X) \cong S_{q}$ is the set of bijections of X. We claim that θ is injective. If $k \in \operatorname{ker}(\theta)$ then $x_{i} P=\theta(k) x_{i} P=k x_{i} P$ for all x_{i}, so $x_{i}^{-1} k x_{i} P=P$ and $x_{i}^{-1} k x_{i} \in P$. This implies that $k \in \bigcap x_{i} P x_{i}^{-1}$. Since P is not normal, this intersection is 1 implying that $k=1$ and therefore θ is injective.

Because θ is injective we may identify G with its image in S_{q}. The only elements of order q in S_{q} are q-cycles, so $\theta(y)$ is a q-cycle. Without loss of generality we may assume that $\theta(y)=(1,2, \cdots, q)$. Then Q is identified with $\langle(1,2, \cdots, q)\rangle$. Since Q is normal, the image of G is contained in the normalizer of this cyclic subgroup, as required.

Problem 4.3\#34. Prove that if p is a prime and P is a subgroup of S_{p} of order p then $\left|N_{S_{p}}(P)\right|=p(p-1)$. [Argue that every conjugate of P contains exactly $p-1 p$-cycles and use the formula for the number of p-cycles to compute the index of $N_{S_{p}}(P)$ in S_{p}.]
Solution. Let $P_{1}=P, P_{2} \cdots, P_{h}$ be the subgroups of S_{p} of order p. Each of these subgroups is cyclic of order p, and is generated by a p-cycle. They are all conjugate.

Let $P_{i}^{*}=P_{i}-\{1\}$. Then P_{i}^{*} are clearly disjoint, and their union is the set of all p-cycles. Since $\left|P_{i}^{*}\right|=p-1$ this means that $(p-1) h$ is the total number of p-cycles in S_{p}. To count these another way, every p-cycle can be written $(1 a b \cdots z)$ where a, b, \cdots, z are $2,3, \cdots, p$ in some order. There are $(p-1)!$ possibilities. Thus $(p-1) h=(p-1)$! so $h=(p-2)!$.

Now h is the number of conjugates of $P=P_{1}$, that is $\left[S_{p}: N_{G}(P)\right]=(p-2)!$. Now

$$
\left|N_{S_{p}}(P)\right|=\frac{\left|S_{p}\right|}{\left[S_{p}: N_{S_{p}}(P)\right]}=\frac{p!}{(p-2)!}=p(p-1)
$$

Problem 4.4 \# 2. Prove that if G is an abelian group of order $p q$, where p and q are distinct primes then G is cyclic.
Solution. By Cauchy's theorem, G has elements x and y of order p and q respectively. Let $z=x y$. We will show that z generates G. First note that $z^{q}=x^{q} y^{q}=x^{q}$. Since x has order p and $p \nmid q, x^{q}$ has order p. Similarly z^{p} has order q. The order of z must therefore be a multiple of both p and q, in other words, a multiple of $p q$. By Lagrange's theorem, the order of z divides $|G|=p q$, so $p q$ is exacctly the order of z. Thus z is a generator of G and G is cyclic.

Problem 4.4 \# 13. Let G be a group of order 203. Prove that if G has a normal subgroup H of order 7 then $H \subseteq Z(G)$.
Solution. We have $203=7 \cdot 29$. We are assuming that H has order 7 and is normal. We then have a homomorphism $\phi: G \longrightarrow \operatorname{Aut}(H)$ which is the action by conjugation. In other words, $\phi(g)$ is the automorphism $c_{g} \in \operatorname{Aut}(H)$ defined by $c_{g}(x)=g x g^{-1}$. Now $\operatorname{Aut}(H)$ has order 6 by Proposition 16 on page 135 of Dummit and Foote. Therefore the image of ϕ is a subgroup of an order 6 that is isomorphic to $G / \operatorname{ker}(\phi)$; so its order divides both 6 and 203. Since 6 and 203 are coprime, this means that ϕ is the trivial map, so c_{g} is the identity automorphism of H for all g. That is, $g x g^{-1}=c_{g}(x)=x$ for all $x \in H$ and $g \in G$. Therefore H is contained in the center of G.

Problem $4.5 \#$ 13. Prove that a group of order 56 has a normal p-Sylow subgroup for some prime p dividing 56.

Solution. Suppose that $|G|=56$. The 7 -Sylow has either 1 or 8 conjugates, since the number of 7 -Sylows is $\equiv 1$ mod 7 and divides 56 . Thus either the 7 -Sylow is normal or it has 8 conjugates P_{1}, \cdots, P_{8}. Each P_{i} contains 6 elements of order 7, and these are all distinct. So G has $8 \cdot 6=48$ elements of order 7. Now let Q be a 2 -Sylow, so $|Q|=8$. There are precisely 8 elements that are not of order 7 , so

$$
Q=\{g \in G \mid g \text { does not have order } 7\}
$$

From this we see that the elements of Q are permuted by conjugation, so $h Q h^{-1}=Q$ for all h, and Q is normal.

Problem 4.5\#25. Prove that if G is a group of order 385 then $Z(G)$ contains a 7 -Sylow subgroup and an 11-Sylow subgroup is normal in G.
Solution. Since $385=5 \cdot 7 \cdot 11$, the number of 7 -Sylows divides 55 and is $\equiv 1 \bmod 7$; therefore the 7 -Sylow P is normal. Also the number of 11 -Sylows divides 35 and is $\equiv 1 \bmod 11$, so the 11-Sylow is also normal. But we have to show that the 7-Sylow is central. This is somewhat similar to We have a homomorphism $\theta: G \longrightarrow \operatorname{Aut}(P)$ in which $\theta(g)$ is conjugation by P. The image is a subgroup of $\operatorname{Aut}(P)$, which has order 6 , which is isomorphic to $G / \operatorname{ker}(\theta)$; hence it has order dividing both 6 and 386. Since these are coprime, θ is trivial, meaning that $\theta(g)=1_{P}$ for all P. Thus if $x \in P$ we have $g x g^{-1}=\theta(g) x=x$, and so P is central.

Problem $7.4 \# 37$. A commutative ring R is called a local ring if it has a unique maximal ideal. Prove that if R is a local ring with maximal ideal M then every element of $R-M$ is a unit. Prove conversely that if R is a commutative ring with unit such that the nonunits of R form an ideal, then R is a local ring with a unique maximal ideal M.

Solution. Let R be local with maximal ideal M. We will show that M is the set of non-units in R. If $x \in M$ then $R x \subseteq M$ so $1 \notin R x$, meaning that x is a nonunit. On the other hand, suppose that x is a non-unit. Then $R x$ is a proper ideal of R. By Proposition 11 on page 254 of Dummit and Foote, it is contained in a maximal ideal. Since R has a unique maximal ideal $M, R x \subseteq M$. Therefore $x \in M$. We have proved that M is the set of nonunits.

If R is a commutative ring such that the nonunits form an ideal M, we are asked to show that R is local. First let us check that M is maximal. If I is any ideal such that $M \subseteq I$, then either $I=M$ or I contains an element $x \notin M$. Thus x is a nonunit and so $R=R x \subset R I=I$. Hence M is maximal. To see that it is the unique maximal ideal, suppose that M^{\prime} is another maximal ideal. Then since M^{\prime} is proper, M^{\prime} consists of nonunits, so $M^{\prime} \subseteq M$; since M is maximal, $M^{\prime}=M$.

Here is an example of a local ring: let

$$
R=\{a / b \in \mathbb{Q} \mid a, b \in \mathbb{Z}, b \text { odd }\}
$$

It is easy to see that R is closed under addition and multiplication, so it is a ring. It is local, with maximal ideal

$$
M=\{a / b \mid a, b \in \mathbb{Z}, a \text { even, } b \text { odd. }\}
$$

Problem 7.5 \# 3. Let F be a field. Prove that F contains a unique smallest subfield F_{0} and that F_{0} is isomorphic to either \mathbb{Q} or $\mathbb{Z} / p \mathbb{Z}$ for some prime p.
Solution. In Exercise $7.3 \# 26$ we constructed a homomorphism $\varphi: \mathbb{Z} \longrightarrow F$ such that $\varphi(1)=1$. Let \mathfrak{p} be the kernel of φ. Since $\varphi(\mathbb{Z})$ is a subring of a field, it is an integral domain. By the first isomorphism theorem, $\varphi(\mathbb{Z}) \cong \mathbb{Z} / \mathfrak{p}$, and therefore \mathfrak{p} is a prime ideal. The prime ideals of \mathbb{Z} are (0), and (p) where p is a prime integer. There are thus 2 cases.

First, suppose that $\mathfrak{p}=0$. Then φ is injective, by Corollary 16 on page 263 of Dummit and Foote, the smallest field F_{0} of F that contains $\varphi(\mathbb{Z}) \cong \mathbb{Z}$ is isomorphic to the field of fractions \mathbb{Q} of \mathbb{Z}. Any subfield of F contains 1 , hence the image of φ, and so F_{0} is the smallest subfield of F.

If $\mathfrak{p}=(p)$, then $\varphi(\mathbb{Z}) \cong \mathbb{Z} /(p)$ is already a field, and it is a subfield of F. This is the field F_{0} in this case. Since any subfield of F contains 1 , it contains $\varphi(\mathbb{Z})$, and so F_{0} is the smallest subfield of F.

