Problem 4.1 #1. Let \(G \) act on the set \(X \). Prove that if \(a, b \in A \) with \(b = g \cdot a \) for some \(g \in G \) then \(G_b = gG_ag^{-1} \). (\(G_a \) is the stabilizer of \(a \).) Deduce that if \(G \) acts transitively on \(A \) then the kernel of the action is
\[
\bigcap_{g \in G} gG_ag^{-1}. \quad (1)
\]

Solution. \(\iff \ g^{-1}hg \cdot a = a \iff g^{-1}hg \in G_a \). Thus
\[
h \in G_b \iff h \cdot b = b \iff hg \cdot a = g \cdot a \iff g^{-1}hg \cdot a = a \iff g^{-1}hg \in G_a \iff h \in gG_ag^{-1}
\]
proving that \(G_b = gG_ag^{-1} \). The kernel of the action is the intersection of the stabilizers:
\[
\bigcap_{b \in X} G_b
\]
because to be in this set means exactly that \(gb = b \) for all \(x \in X \). If the action is transitive, each of these stabilizers equals \(gG_ag^{-1} \) for some \(g \in G \), so the kernel equals (1).

Problem 4.2 #2. List the elements of \(S_3 \) as 1, (12), (23), (13), (123), (132) and label these with the integers 1, 2, 3, 4, 5, 6 respectively. Exhibit the image of every element of \(S_3 \) under the left regular representation of \(S_3 \) into \(S_6 \).

Solution. I think it may be clearer from a notational point of view to denote 1 = a, (12) = b, (23) = c, (13) = d, (123) = e and (132) = f. Then (12)a = b, (12)b = a, (12)c = e, (12)d = f, (12)e = c and (12)f = d so the image of (12) in \(S_6 \), interpreted as bijections of \(\{a, b, c, d, e, f\} \) is the permutation
\[
(ab)(ce)(df).
\]
I get the following answers for all permutations.

\[
\begin{array}{c|c}
1 & 1 \\
(12) & (ab)(ce)(df) \\
(23) & (ac)(bf)(de) \\
(13) & (ad)(be)(cf) \\
(123) & (afe)(bdc) \\
(132) & (afe)(bcd) \\
\end{array}
\]

Problem 4.2 #9. Prove that if \(p \) is a prime and \(G \) is a group of order \(p^\alpha \) then every subgroup of \(G \) of index \(p \) is normal. Deduce that every group of order \(p^2 \) has a normal subgroup of order \(p \).

Solution. If \(|G| = p^\alpha \) and \([G : H] = p\), then by Corollary 5 on page 120, \(H \) is normal.

Now assume that \(|G| = p^2\). Note that \(G \) has an element \(x \) of order \(p \). Indeed, let \(g \) be any nonidentity element of \(G \). By Lagrange’s theorem the order of \(g \) is \(p \) or \(p^2 \). In the first case, take \(x = g \); in the second, take \(x = g^p \). In either case, \(\langle x \rangle \) is a subgroup of index \(p \), and by the first part of the problem, it is normal.

Problem 4.3 #4. Prove that if \(S \subseteq G \) is a subset then \(gN_G(S)g^{-1} = N_G(gSg^{-1}) \) and \(gC_G(S)g^{-1} = C_G(gSg^{-1}) \).

Solution. I think this statement is clarified by generalizing it. So let \(G \) and \(H \) be any groups and \(\phi : G \rightarrow H \) an isomorphism. If \(S \) is a subset of \(G \) then we claim that \(\phi(N_G(S)) = N_H(\phi(S)) \). Indeed, suppose that \(x \in N_G(S) \) and let \(y = \phi(x) \). Applying \(\phi \) to the identity \(xSx^{-1} = S \) gives \(y\phi(S)y^{-1} = \phi(S) \) so \(y \in N_H(\phi(S)) \). This proves that \(\phi(N_G(S)) \subseteq N_H(\phi(S)) \) and similarly if \(\psi : H \rightarrow G \) is the inverse isomorphism then \(\psi(N_H(\phi(S))) \subseteq N_G(S) \), so actually \(\phi(N_G(S)) = N_H(\phi(S)) \).

We apply this with \(H = G \) and \(\phi(x) = gxg^{-1} \), the “conjugation by \(g \)” automorphism of \(G \) to obtain \(gN_G(S)g^{-1} = N_G(gSg^{-1}) \).

The proof for \(C_G(S) \) is nearly the same: if \(\phi : G \rightarrow H \) is an isomorphism then \(\phi(C_G(S)) = C_H(\phi(S)) \) because \(x \) centralizes \(S \) (that is \(sx = xs \) for all \(s \in S \)) if and only if \(y = \phi(x) \) centralizes \(\phi(S) \) (that is, \(\phi(s)\phi(x) = \phi(x)\phi(s) \) for all \(\phi(s) \in \phi(S) \)). Again, taking \(G = H \) and \(\phi(x) = gxg^{-1} \) gives \(gC_G(S)g^{-1} = C_G(gSg^{-1}) \).

Problem 4.3 #8. Prove that \(Z(S_n) = 1 \) for \(n \geq 3 \).
Solution. Let \(g \) be any permutation that is not equal to 1. We have to prove that there is an element \(\sigma \) of \(S_n \) that does not commute with \(g \). Let \(a \) be some element of \(S_n \) such that \(g(a) = b \) and \(b \neq a \). Let \(c \) be an element of \(\{1, 2, \cdots, n\} \) that is not equal to either \(a \) or \(b \), and let \(\sigma \) be the transposition \((a, b)\). Now consider \(\sigma g \sigma^{-1} g^{-1} \). We have \(g^{-1}(b) = a, \sigma(a) = a, g(a) = b \) and \(\sigma(b) = c \). So \(\sigma g \sigma^{-1} g^{-1}(b) = c \). Since \(b \neq c \), \(\sigma g \sigma^{-1} g^{-1} \) is not the identity map, so \(\sigma g \neq g \sigma \). This proves that \(g \) does not commute with \(\sigma \). So unless \(g = 1 \), it cannot be in the center of \(S_n \).

Problem 4.3 #28. Let \(p \) and \(q \) be distinct primes with \(p < q \). Prove that a nonabelian group \(G \) of order \(pq \) has a nonnormal subgroup of index \(q \), so there exists an injective homomorphism \(G \to S_q \). Deduce that \(G \) is isomorphic to a subgroup of the normalizer in \(S_q \) of the cyclic group generated by the \(q \)-cycle \((1, 2, \cdots, q)\).

Solution. By Cauchy’s theorem \(G \) has element \(x \) and \(y \) of orders \(p \) and \(q \), respectively. Let \(P \) and \(Q \) be the cyclic subgroups they generate. Then \(Q \) is normal by Corollary 5 on page 120. We claim that \(P \) is not normal. If it is, then \(xyx^{-1}y^{-1} = x(yxy^{-1})^{-1} \) is a product of two elements of \(P \), so it is in \(P \); while \(xyx^{-1}y^{-1} = (xyx^{-1})y^{-1} \) is a product of two elements of \(Q \) so it is in \(Q \). This means that \(xyx^{-1}y^{-1} \in P \cap Q = 1 \) so \(x \) and \(y \) commute. However \(x \) and \(y \) generate \(G \) since the order of the group they generate has order a multiple of both \(p \) and \(q \), so \(\langle x, y \rangle = G \). If \(x \) and \(y \) commute then \(G \) is abelian, which is a contradiction. This proves that \(P \) is not normal.

Now \(G \) acts on the set \(X \) of left cosets of \(P \) by left multiplication. Denote these \(x_1 P, \cdots, x_q P \). We have a homomorphism \(\theta : G \to \text{Bij}(X) \), where \(\text{Bij}(X) \cong S_q \) is the set of bijections of \(X \). We claim that \(\theta \) is injective. If \(k \in \ker(\theta) \) then \(x_i P = \theta(k)x_i P = kx_i P \) for all \(x_i \), so \(x_i^{-1}kx_i P = P \) and \(x_i^{-1}kx_i \in P \). This implies that \(k \in \bigcap x_i P x_i^{-1} \). Since \(P \) is not normal, this intersection is 1 implying that \(k = 1 \) and therefore \(\theta \) is injective.

Because \(\theta \) is injective we may identify \(G \) with its image in \(S_q \). The only elements of order \(q \) in \(S_q \) are \(q \)-cycles, so \(\theta(y) \) is a \(q \)-cycle. Without loss of generality we may assume that \(\theta(y) = (1, 2, \cdots, q) \). Then \(Q \) is identified with \(\langle (1, 2, \cdots, q) \rangle \). Since \(Q \) is normal, the image of \(G \) is contained in the normalizer of this cyclic subgroup, as required.

Problem 4.3 #34. Prove that if \(p \) is a prime and \(P \) is a subgroup of \(S_p \) of order \(p \) then \(|N_{S_p}(P)| = p(p - 1)|. \) [Argue that every conjugate of \(P \)
contains exactly \(p - 1 \) \(p \)-cycles and use the formula for the number of \(p \)-cycles to compute the index of \(N_{S_p}(P) \) in \(S_p \).]

Solution. Let \(P_1 = P, P_2, \ldots, P_h \) be the subgroups of \(S_p \) of order \(p \). Each of these subgroups is cyclic of order \(p \), and is generated by a \(p \)-cycle. They are all conjugate.

Let \(P^*_i = P_i - \{1\} \). Then \(P^*_i \) are clearly disjoint, and their union is the set of all \(p \)-cycles. Since \(|P^*_i| = p - 1 \) this means that \((p - 1)h \) is the total number of \(p \)-cycles in \(S_p \). To count these another way, every \(p \)-cycle can be written \((1ab\cdots z)\) where \(a, b, \ldots, z \) are \(2, 3, \ldots, p \) in some order. There are \((p - 1)!\) possibilities. Thus \((p - 1)h = (p - 1)!\) so \(h = (p - 2)! \).

Now \(h \) is the number of conjugates of \(P = P_1 \), that is \([S_p : N_G(P)] = (p - 2)!\). Now

\[
|N_{S_p}(P)| = \frac{|S_p|}{[S_p : N_{S_p}(P)]} = \frac{p!}{(p - 2)!} = p(p - 1).
\]